Skip to main content

Quantum Pushdown Automata with a Garbage Tape

  • Conference paper
SOFSEM 2015: Theory and Practice of Computer Science (SOFSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

  • 1308 Accesses

Abstract

Several kinds of quantum pushdown automaton models have been proposed, and their computational power is investigated intensively. However, for some quantum pushdown automaton models, it is not known whether quantum models are at least as powerful as classical counterparts or not. This is due to the reversibility restriction. In this paper, we introduce a new quantum pushdown automaton model that has a garbage tape. This model can overcome the reversibility restriction by exploiting the garbage tape to store popped symbols. We show that the proposed model can simulate any quantum pushdown automaton with a classical stack as well as any probabilistic pushdown automaton. We also show that our model can solve a certain promise problem exactly while deterministic pushdown automata cannot. These results imply that our model is strictly more powerful than classical counterparts in the setting of exact, one-sided error and non-deterministic computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum oBDDs and width hierarchies for classical oBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Amarilli, A., Jeanmougin, M.: A proof of the pumping lemma for context-free languages through pushdown automata, coRR, abs/1207.2819 (2012)

    Google Scholar 

  3. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weakness and generalizations. In: Proceedings of the 29th Symposium on Foundations of Computer Science (FOCS 1998), pp. 332–341 (1998)

    Google Scholar 

  4. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonner, R., Freivalds, R., Kravtsev, M.: Quantum versus probabilistic one-way finite automata with counter. In: Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics (SOFSEM2001), pp. 181–190 (2001)

    Google Scholar 

  7. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciamarra, M.P.: Quantum reversibility and a new model of quantum automaton. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 376–379. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proceedings of the Royal Society A 454, 339–354 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deutsch, D.: The Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society A 400, 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deutsch, D., Jozsa, R.: Rapid solution of problem by quantum computation. Proceedings of the Royal Society A 439, 553–558 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golovkins, M.: Quantum pushdown automata. In: Proceedings of 27th Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2000), pp. 336–346 (2000)

    Google Scholar 

  13. Hirvensalo, M.: Various aspects of finite quantum automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 21–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Hirvensalo, M.: Quantum automata with open time evolution. International Journal of Natural Computing Research (IJNCR) 1(1), 70–85 (2010)

    Article  Google Scholar 

  15. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th Symposium on Foundations of Computer Science (FOCS 1997), pp. 66–75 (1997)

    Google Scholar 

  16. Kravtsev, M.: Quantum finite one-counter automata. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 431–440. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1–2), 275–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Journal 46(10), 2471–2480 (2005)

    MathSciNet  Google Scholar 

  19. Nakanishi, M.: Quantum pushdown automata with a garbage tape, arXiv:1402.3449 (2014)

    Google Scholar 

  20. Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Expressive power of quantum pushdown automata with classical stack operations under the perfect-soundness condition. IEICE Transactions on Information and Systems E89-D(3), 1120–1127 (2006)

    Article  Google Scholar 

  21. Ogden, W.: A helpful result for proving inherent ambiguity. Mathematical Systems Theory 2(3), 191–194 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Paschen, K.: Quantum finite automata using ancilla qubits (2000), technical report, University of Karlsruhe (2000), http: www.digbib.ubka.uni-karlsruhe.de

    Google Scholar 

  23. Say, A.C.C., Yakaryılmaz, A.: Quantum counter automata. International Journal of Foundations of Computer Science 23(5), 1099–1116 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yakaryılmaz, A.: Superiority of one-way and realtime quantum machines. RAIRO - Theoretical Informatics and Applications 46(04), 615–641 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yakaryılmaz, A., Freivalds, R., Say, A.C.C., Agadzanyan, R.: Quantum computation with wirte-ony memory. Natural Computing 11(1), 81–94 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yakaryılmaz, A., Say, A.C.C.: Efficient probability amplification in two-way quantum finite automata. Theoretical Computer Science 410(20), 1932–1941 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(4), 19–40 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 209(6), 873–892 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter automata. Theoretical Computer Science 334(1-3), 275–297 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yamasaki, T., Kobayashi, H., Tokunaga, Y., Imai, H.: One-way probabilistic reversible and quantum one-counter automata. Theoretical Computer Science 289(2), 963–976 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakanishi, M. (2015). Quantum Pushdown Automata with a Garbage Tape. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics