Abstract
Several kinds of quantum pushdown automaton models have been proposed, and their computational power is investigated intensively. However, for some quantum pushdown automaton models, it is not known whether quantum models are at least as powerful as classical counterparts or not. This is due to the reversibility restriction. In this paper, we introduce a new quantum pushdown automaton model that has a garbage tape. This model can overcome the reversibility restriction by exploiting the garbage tape to store popped symbols. We show that the proposed model can simulate any quantum pushdown automaton with a classical stack as well as any probabilistic pushdown automaton. We also show that our model can solve a certain promise problem exactly while deterministic pushdown automata cannot. These results imply that our model is strictly more powerful than classical counterparts in the setting of exact, one-sided error and non-deterministic computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum oBDDs and width hierarchies for classical oBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Heidelberg (2014)
Amarilli, A., Jeanmougin, M.: A proof of the pumping lemma for context-free languages through pushdown automata, coRR, abs/1207.2819 (2012)
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weakness and generalizations. In: Proceedings of the 29th Symposium on Foundations of Computer Science (FOCS 1998), pp. 332–341 (1998)
Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)
Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)
Bonner, R., Freivalds, R., Kravtsev, M.: Quantum versus probabilistic one-way finite automata with counter. In: Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics (SOFSEM2001), pp. 181–190 (2001)
Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)
Ciamarra, M.P.: Quantum reversibility and a new model of quantum automaton. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 376–379. Springer, Heidelberg (2001)
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proceedings of the Royal Society A 454, 339–354 (1998)
Deutsch, D.: The Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society A 400, 97–117 (1985)
Deutsch, D., Jozsa, R.: Rapid solution of problem by quantum computation. Proceedings of the Royal Society A 439, 553–558 (1992)
Golovkins, M.: Quantum pushdown automata. In: Proceedings of 27th Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2000), pp. 336–346 (2000)
Hirvensalo, M.: Various aspects of finite quantum automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 21–33. Springer, Heidelberg (2008)
Hirvensalo, M.: Quantum automata with open time evolution. International Journal of Natural Computing Research (IJNCR) 1(1), 70–85 (2010)
Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th Symposium on Foundations of Computer Science (FOCS 1997), pp. 66–75 (1997)
Kravtsev, M.: Quantum finite one-counter automata. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 431–440. Springer, Heidelberg (1999)
Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1–2), 275–306 (2000)
Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Journal 46(10), 2471–2480 (2005)
Nakanishi, M.: Quantum pushdown automata with a garbage tape, arXiv:1402.3449 (2014)
Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Expressive power of quantum pushdown automata with classical stack operations under the perfect-soundness condition. IEICE Transactions on Information and Systems E89-D(3), 1120–1127 (2006)
Ogden, W.: A helpful result for proving inherent ambiguity. Mathematical Systems Theory 2(3), 191–194 (1968)
Paschen, K.: Quantum finite automata using ancilla qubits (2000), technical report, University of Karlsruhe (2000), http: www.digbib.ubka.uni-karlsruhe.de
Say, A.C.C., Yakaryılmaz, A.: Quantum counter automata. International Journal of Foundations of Computer Science 23(5), 1099–1116 (2012)
Yakaryılmaz, A.: Superiority of one-way and realtime quantum machines. RAIRO - Theoretical Informatics and Applications 46(04), 615–641 (2012)
Yakaryılmaz, A., Freivalds, R., Say, A.C.C., Agadzanyan, R.: Quantum computation with wirte-ony memory. Natural Computing 11(1), 81–94 (2012)
Yakaryılmaz, A., Say, A.C.C.: Efficient probability amplification in two-way quantum finite automata. Theoretical Computer Science 410(20), 1932–1941 (2009)
Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(4), 19–40 (2010)
Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 209(6), 873–892 (2011)
Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter automata. Theoretical Computer Science 334(1-3), 275–297 (2005)
Yamasaki, T., Kobayashi, H., Tokunaga, Y., Imai, H.: One-way probabilistic reversible and quantum one-counter automata. Theoretical Computer Science 289(2), 963–976 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakanishi, M. (2015). Quantum Pushdown Automata with a Garbage Tape. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-662-46078-8_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46077-1
Online ISBN: 978-3-662-46078-8
eBook Packages: Computer ScienceComputer Science (R0)