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Abstract. The wide adoption of smart mobile devices makes the con-
cept of human as a sensor possible, opening the door to new ways of
solving recurrent problems that occur in everyday life by taking advan-
tage of the information these devices can produce. In the case of this
paper, we present part of the work done in the EU project SUPERHUB
and introduce how geolocated positioning coming from such devices can
be used to infer the current context of the city, e.g., disruptive events, and
how this information can be used to provide services to the end-users.
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1 Introduction

Mobility is one of the main challenges for urban planners in cities. Even with
the constant technological progress, it is still difficult for policy makers and
transport operators to 1) know the state of the city in (near) real-time, and 2)
achieve proximity with the end-user of such city services, especially with regards
to communicating with the citizen and receiving proper feedback.

There is a relatively recent technological advance that enables an opportunity
to partially tackle these issues: ubiquous computational resources. For instance,
thanks to smartphones, users that move in a city can potentially generate auto-
matic data that may be hard to obtain otherwise: location, movement flow, av-
erage trip times, and so on. Moreover, transport network problems and incidents
that affect mobility services are often documented by someone somewhere in the
Internet at the same time or even before, than they appear in official sources or
in the news media. This phenomenon has been referred to as humans as sensors
[14]. Sensing through mobile humans potentially provides sensor coverage where
events are taking place. An additional benefit is that human expertise can be
used to operate such sensors to raise the quality of measurements, through e.g.,
a more intelligent decision making, such as setting up a camera in an optimal
way in poor lighting conditions; or providing exploitable additional metadata,
as in collaborative tagging processes such as hashtagging.

In this paper, we show a system that is able to mine such data in order to:



1. improve knowledge obtained from other data generation approaches, such as
GPS pattern analysis,

2. detect unexpected situations in the city that may affect large groups of people
at a certain location, e.g., public demonstrations or celebrations, sudden
traffic jams caused by accidents, and

3. enable services to users that exploit such generated knowledge, providing
novel kinds of real-time information and recommendation.

The paper presents, due to space constraints, just a general overview of the
problems we tackle, the preliminar results of the parts already implemented, and
the future work. For deeper reports on the technical details, please refer to the
related deliverables1 and to [8].

This paper is structured as follows: in §2 we introduce SUPERHUB, an ur-
ban mobility-related EU project; §3 contains an explanation of the extent of the
contextual detection, focusing on social network data; §4 explains how the con-
textual information generated can be used to provide services for the end-users;
and finally §5 presents related work and wraps up the paper with conclusions.

2 The case of SUPERHUB

SUPERHUB [2] is a project co-funded by the European Commission. Its main
goal is to provide an open platform capable of considering in real time various
mobility offers, in order to provide a set of mobility services able to address
users’ needs. At the same time the project intends to promote user participation
and environmental friendly and energy-efficient behaviours.

To achieve these objectives SUPERHUB is developing, but not limited to
(see Figure 1): 1) novel methods and tools for real-time reasoning on large data
streams coming from heterogeneous sources; 2) new algorithms and protocols
for inferring traffic conditions from mobile users, by coupling data from mobile
phone networks with information coming from both GPS data and social network
streams; and 3) a journey planner with the goal of best fulfilling user mobility
needs and preferences while minimizing negative environmental impact.

The project builds on the notion that citizens are not just mere users of
mobility services, but represent an active component and a resource for policy-
makers willing to improve sustainable mobility in smart cities. Existing journey
planners only provide a few options to let users customize, to some extent, how
the journey should look like. The reality, however, is more nuanced – different
users might prefer different routes which, in addition, depend on the users context
(e.g., a shopping trip, travelling with small children or going back home) as well
as on the environmental context: weather, traffic, crowdedness, events, etc.

At a technical level, this is reflected in a front-end component of the system
that automatically builds, maintains and adapts users profile over time, which
includes a detailed description of users preferences in terms of mobility options.

1
http://www.superhub-project.eu/downloads/viewcategory/6-approved-deliverables.html

http://www.superhub-project.eu/downloads/viewcategory/6-approved-deliverables.html


Fig. 1: Persuasive mobility Services and Interfaces view of the SUPERHUB ar-
chitecture [4]. In boxes, the components this paper focuses on.

The profile is used to customize and rank mobility offers, in such a way to
promote solutions as close as possible to users expectations, in terms of their
needs and goals, while fostering the adoption of environmentally-friendly offers.

By using 1) the contextual information obtained by a wide range of hetero-
geneous sources and 2) such user profile, SUPERHUB is able to rank mobility
offers and provide personalized recommendations.

3 Real-time detection of urban context

In a real-world setting, the SUPERHUB journey planner has to be ready to
receive high amounts of journey plan requests and deliver multimodal recom-
mendations that best fit a wide range of criteria, including user preferences.
However, the evaluation of such criteria is continuously dependent on factors
that occur in the external world, what we call the context of the request. And
the context, given the same external conditions, is always city-dependent.

For example, if a request for a journey plan is made in January while it is
snowing, in the case of Helsinki it is considered a normal situation and public
transport should not be affected by such weather conditions. However, if the
user is in Barcelona it is considered an extraordinary case that has numerous,
unpredictable consequences on the transport networks. Therefore, weather sensor
data may be useful to detect a context, but is not sufficient by itself.



3.1 From heterogeneous sensor data to real-time knowledge

This process is being carried in SUPERHUB by the Semantic Interpreter, tak-
ing advantage of semantic interpretation techniques in order to infer knowledge
from both situational and historical data. Such knowledge can be applied by
other components for diverse purposes, such as generating more fine-grained user
models, or being able to understand normality with respect to policy fulfillment
and thus derive and predict unexpected situations.

The Semantic Interpreter is a component that provides knowledge in the form
of RDF triples inferred from sensor data that is of a higher level of abstraction
than what is usually obtained with other techniques, acting as a central point for
data homogeneisation. Via the Semantic Interpreter, raw data is filtered, nor-
malised and interpreted into high-level concepts. Such concepts can be merged
and analysed to generate derivative concepts that are not explicit in the sensor
data but implicit in the aggregation of large instances of it. The analysis relies in
applying semantic inference via Pellet, fed by expert knowledge and constitutive
information about the city in SWRL, applied to statistical aggregations.

Fig. 2: Sketch of the internal components of the Semantic Interpreter.

The SUPERHUB Semantic Interpreter has been implemented in Clojure [10]
(a dialect of Lisp) and has been collecting and processing data on top of the JVM
since July 2013. The raw data, in a normalised form (called Situational Data)
is stored in MongoDB as JSON documents, while the RDF produced represent-
ing high-level knowledge, e.g., disruptive events, are stored in a Neo4j graph
database. Internally, the implementation is based on independent, autonomous
agents that communicate with each other exclusively by asynchronous messages
via Clojure agents. The agents have the capability of proactively assign them-
selves a particular role (see Figure 2):

– Crawler agents assign themselves a target API or web service and manage
the reception of data from them, coordinating between them which endpoints
from a common pool should be queried or listened to next, and

– Worker agents schedule periodical aggregation processes. Aggregation pro-
cesses can be hot-plugged and removed from the Semantic Interpreter at



runtime via plug-ins, and can include but are not limited to: crowdedness by
area and time interval, crowdedness by Point of Interest and time interval,
user trajectories by time interval, disruptive events detection, etc.

In a data-sensible application such as the Semantic Interpreter, reliability
is a crucial feature. In our system agents are fail-safe in the sense that if a
process fails, another agent is taken from a pool to automatically select one or
more roles and fulfill them. Scalability is handled by the Semantic Interpreter
by not allowing more agents than n − 1, where n is the number of cores of the
host. The system handles tasks in an abstract way, while the execution part is
held autonomously by agents that can plan individually and coordinate between
themselves. Therefore, the system is decentralised and scheduled tasks are always
picked up, and a result of that failures in the Semantic Interpreter have been
very sporadic (two shortages in 7 months).

An instance of the Semantic Interpreter can be parametrised by setting up
the following values in a configuration file: latitude and longitude of the central
coordinate, radius of the metropolitan area of the city, counts-as rules (city-
specific interpretation rules in RDF), social network API keys, the credentials
to MongoDB and Neo4j, and the periodicity of the aggregation processes. This
means that, with a small setup, the instance can be applied to any city.

The RDF information generated by the Semantic Interpreter through each
of the aggregation processes carried out by agents is visually represented by the
SUPERHUB Situational Data Visualiser. In Figure 3 there is an example of such
information: raw data from social networks (dots), density by area (rectangles),
and user trajectories (arrows) corresponding to a span of 15 minutes.

Fig. 3: Screenshot of the SUPERHUB Situational Data Visualiser, showing raw
data, density by areas and user trajectories.

3.2 Inferring city context from social networks

In SUPERHUB, many types of sensors and services are used to get a picture of
what is going on in the city: GPS real-time data, mobility flow patterns, offi-



cial alerts, social network information propagation and weather forecasts among
others. By simply combining incoming loads of such data, it is not possible to
make pertinent complex decisions: we need to infer what the big picture is in
order to interpret the current context and its implications. After that we will be
able to detect relevant situations.

Basically, a normal situation in the city can be modelled under a spatio-
temporal context which can be defined as any information that characterises a
situation. Disruptive events and incidents in the mobility city field are abnor-
mal situations that have a significant impact on the city mobility, for instance:
traffic jams or metro service delays. In order to maintain a reliable mobility city
behaviour, it is necessary to detect and predict these kind of events.

In the case of Twitter, tweets are aggregated and analysed in time windows
in order to find located trends [15]. In information diffusion, reliability of data
obtained is a big concern, and our solution is to filter bots and spammers by
analysing the topology of the individual social networks of the users [1], and
by calculating their influence on other users [9]. The Foursquare API adds to
the reliability score of the aggregated data by contrasting the detected trends
against area-based collections of check-ins in the same time windows.

Currently, the Semantic Interpreter is able to detect disruptive events based
on abnormal social network activity. By grounding the model of events spatio-
temporally we build a representation of each event which allows temporal and
spatial reasoning. Our final event representation, further discussed in [8], allows
us to know the relevance of the event (how much it deviates from expected
behavior), the impact of the event (what is its effect on nearby areas and mobility
services) and how the event forms and disperses (when did the event actually
begin, when it reached full certainty, when did it began to fade away and for how
long) among others. All those features together with the results of a collaborative
tagging process (see §3.3) empowers interesting features, supported by promising
results. As an example of those consider the most relevant events detected by
the system (those with a higher deviation from the expected behavior). The top
40 events are shown in Table 1.

Another example of potential application of this methodology is that of event
crowd estimation. Since Table 1 indicates that events detected with more cer-
tainty are those with more popular assistance, we considered the possibility of
estimating the actual assitance to an event through the data collected by our
system. We obtained the estimated assistance to the top 100 events detected
from official sources when available, and estimated the rest from venue capacity.
The result is a dispersion chart showing the relationship between the average ac-
tivity captured by our system and the actual attendance of the event, along with
a computed linear regression (see Figure 4). The Pearson correlation coefficient
is approximately 0.82, which is a relevant result considering the dispersion of the
data collected. This experiment suggests that we can automatically estimate the
number of people at an event through its representation in our model.



1 FCB vs Madrid 11 3 nearby concerts 21 Depeche Mode con-
cert

31 Barcelona Fashion
Week

2 FCB vs Elche 12 Airport 22 New Year @ Park
Guell

32 FOALS concert

3 FCB vs Malaga 13 Michael Buble con-
cert

23 Daughter concert 33 Christmas shopping

4 FCB vs RCDE 14 Arctic Monkeys con-
cert

24 RCDE vs Madrid 34 Biffy Clyro concert

5 FCB vs Milan 15 New Year @ Park
Guell

25 Airport 35 FCB vs Real Sociedad

6 FCB vs Granada 16 Airport 26 Parc Guell visit 36 Mishima concert
7 FCB vs Valencia 17 Bruno Mars concert 27 FCB vs Getafe 37 Airport
8 FCB vs Villareal 18 FCB vs Efes (Bas-

ketball)
28 New Year @ Sagrada

Familia
38 RCDE vs Madrid

9 FCB vs Celtic 19 FCB vs Real So-
ciedad

29 New Year @ Placa
Espanya

39 FCB vs Levante

10 FCB vs Cartagena 20 Airport 30 Camp Nou visit 40 Lori Meyers concert

Table 1: Top 40 events by impact and their description. FCB stands for FC
Barcelona (football, basketball) and RCDE stands for RCD Espanyol (football).

Fig. 4: Captured data vs. actual attendance for the Top 100 events detected.

3.3 User input as a basis for interpretation

When disruptive events happen – e.g., accident, traffic jam, sports events, public
demonstrations, flashmobs –, in most cases it will be captured by the SUPER-
HUB system thanks to the combination of heterogeneous data sources. However,
in many cases there is no further available information that can explain exactly
what happened than a geolocated position. Social networks and user inputs can
be used as part of the disruptive event detection process.

We take advantage of stakeholders and users as experts that annotate and
learn about detected events to identify and predict them. Users can inform and
provide context about events in real-time, as well as provide tagging information
of unclassified past events. In such cases, the identification of recurrent events al-
low the classification of what is normal and what is not. Currently, user feedback
is retrieved by providing a collaborative tagging web application (see Figure 5).
In this applications, users are presented random disrupted events (or they pick



a specific one from the Situational Data Visualiser), and by using an autocom-
plete control they assign tags that are linked to RDF concepts. These concepts
currently include DBPedia, WordNet RDF, and an ad hoc ontology of Points of
Interest based on the Foursquare API.

Fig. 5: Screenshot of the app for collaborative tagging of disruptive events.

Fig. 6: Schema of a distributed system of Semantic Interpreters.

Currently, the SUPERHUB Android mobile app includes a lightweight inter-
face that communicates with the journey planner API. One of the features that
this app provides is the possibility of reporting a disruptive event, by choosing
options specified in a taxonomy. The mobile app also sends, if the user explic-
itly authorises so, GPS traces with the positioning of the user accross time. As
future work, and taking advantage of the fact that the Semantic Interpreter is
easily configurable and automatically scalable, we plan to embed a small and
lightweight version of the Semantic Interpreter instance, working transparently



as a low-priority background process. This instance can be used to obtain more
detailed data coming from the social networks by setting up a smaller radius as
a parameter2, and to perform basic aggregation processes.

Figure 6 shows an schema of this proposal: the instance responsible for the
whole city is in charge of maintaining in real-time a list of all mobile app-
embedded Semantic Interpreter and exposing an API for its Triple Store. Mobile-
embedded instances are connected between themselves, understanding the po-
sition of the nearest ones and thus dynamically deciding whether to expand or
shrink their radius of data gathering.

4 Context-aware user-centric services

The use of personalization in the field of journey planning is mainly focused
on tourism [13]. Although there are other domains where routes are also rec-
ommended, e.g., for sporting/leisure purposes [5,11]. For instance, [5] produces
journey hiking walkways according to a set of milestones or personalize journey
plans by choosing from pre-defined routes which better fit users preferences. Af-
terwards, the selected routes are enhanced by means of adding Points Of Interest
(POI) -relevant geographical features that may be relevant to the user.

In general, these approaches can be considered as aimed at providing routes
to users on closed domains, that is: 1) the set of potential journey plans is already
defined, and 2) the journey plans are built based on a recommended set of POIs
(e.g., touristic routes). Other approaches try to overcome this closed domain
constraint. While some solutions successfully generate this kind of routes, they
do not incorporate users preferences or just a small set of generic preferences are
taken into account (e.g., departure time or cost) [12].

SUPERHUB aims to generate journey plans from a more open perspective.
Users select a destination and plans are designed accordingly, using different
modes of transport, including car-pooling, and considering users preferences and
contextual information (e.g., weather and current users situation). Consequently,
the routes are not enclosed to contain certain POIs and the space search is
broader and more complex. The objective of our recommender is two-fold: 1)
recommending journey plans, and 2) providing opportunistic recommendations
in real-time. A good example of both functionalities can be found in [5]. Our
recommender differs from that approach in that routes are not taken from a
pre-defined set, but are dynamically generated according to contextual situation
in the city. Thus, [5] adds a set of POIs to enhance the routes which is similar to
our approach for opportunistic recommendation, although it does not take into
consideration contextual information.

As discussed previously in §2, the SUPERHUB recommender makes use of
contextual data to perform context-aware recommendations. When context mat-

2 This is due to the fact that the public APIs of the social networks have request
limitations per each API key. Users of the mobile app have the option to provide
connection to social networks, and this connection can be used to obtain more fine-
grained data, virtually expanding the city-wide Semantic Interpreter capabilities.



ters, as is the case of the mobility domain – e.g., when it is raining, people gen-
erally preferto avoid walking or riding a bike –, it is sensible to use a user model
that has been learnt with feedback acquired in the same context as the target
user, as only that feedback is relevant for the prediction.

Given the different nature of both functionalities - predicting user satisfaction
towards a suggested journey plan and suggestiong appealing POIs along a route
- our recommender system implements two different recommender algorithms to
provide them.

In one hand, predicting user score towards journey plans; ideally, there is a
large amount of possible Journey Plans or Legs. This implies that any feedback
retrieved from users may be too sparse, which makes difficult to find similar
users to proceed with a collaborative-filtering approach (e.g., only users that
perform the same routes would be found as similar users). Our solution adopts
a content-based approach, which is consistent with current state of the art on
mobility recommenders. By means of extracting features that define a Journey
Plan or Leg, it is possible to learn the preference towards each feature from
users feedback given to previous journey plans. For instance, a user may provide
positive feedback towards journey plans that require little walking and mainly
use the bus at night, and negative feedback to journey plans that require walking
or riding a bike also when it is dark. Thus, we can predict better score to journey
plans that include taking the bus when night rather than walking. It is worth
noticing that user may have explicited the preference towards riding a bike or
a bus, but the user model has learnt the preference about the same modes of
transport under different contexts. Thus, the training process incorporates users
preferences as a starting point and process feedback from previous journey plans
done to refine those preferences.

In the other hand, suggesting appealing POIs along a route, our recommender
filters a set of POIs by selecting those that are aligned to the user and the context.
Given that the domain of POIs is not as large as journey plans we adopted a
collaborative-filtering approach, which has proven to be effective and requires less
information about items (POIs in this case). Nevertheless, collaborative-filtering
can suffer from data sparsity, thus we chose a Matrix Factorization algorithm
to find latent factors and reduce this issue. For both algorithms, their learning
process and resulting user models share the same input information:

– The situational data, which includes all the wide range of contextual infor-
mation occurring in the city (e.g., weather, pollution, crowdedness).

– The history of previous recommendations, that is journey plans and POIs
suggested, along the user’s context (e.g., purpose and companionship).

– The feedback given by the user about the suggested items (plans or POIs).
– The User profile, to retrieve user’s preferences for bootstrapping purposes.

For each user, different user models are learnt according to the set of contexts
that are more significant or allow distinguishing better what the user likes most
when travelling. Then, when new recommnendations are needed, our system
picks the user model that better fits the current context and uses it to either



predict user’s preference towards a journey plan or select the most appealing
POIs that s/he may like to know while travelling.

The SUPERHUB recommender, by following approaches for context-aware
recommendation [3], allows improving results and dynamically adapting to the
real situation in the city and to users’ needs, goals and current context (e.g.,
in a rush, going to work, with children). In order to do so, it intensively mines
the contextual information generated by the Semantic Interpreter to pre-filter
user models and to learn and exploit contextual user models. This means that
the training process of each recommender computes a user model for each kind
of context (e.g., raining, raining and night, sunny). These models are learnt
offline, since computing all of them require a significant amount of time. Using
this approach, having all the user models of a given user pre-calculated allows
improving scalability of the recommending process.

5 Conclusions

The approach proposed in this paper is to use a combination of sentiment anal-
ysis, semantic inference, information diffusion and big data techniques on top
of interactions of users in certain social networks, combined with city-specific
knowledge, city events calendars and geospatial data. Data is analysed in two
stages, on-line and off-line, in order to learn behavioural patterns and capture
those deviations that may reflect events that affect urban mobility. The Semantic
Interpreter is currently running and producing results for Barcelona, Milan and
Helsinki, the three trials cities for the SUPERHUB project evaluation. By using
an execution mechanism inspired by agent paradigms we make sure that the sys-
tem is self-dependant and reliable enough to automatically build crowdedness
models with data as volatile as social network inputs.

Depending on the periodicity of the aggregation set in the configuration of
the Semantic Interpreter instance, the delay between the start of the event in
the city and the instant at which it is detected by the SUPERHUB platform
may vary, but we have empirically proven it can be as low as 5 minutes.

Additionally, we propose to take advantage of the mobile app by enabling it
with a local semantic interpretation process providing an immediate associated
functionality: enhancing the reporting of disruptive events by proactively sug-
gesting events happening nearby the user and presenting the option to confirm
or deny them, or to tag them. In this way, users would be generators not only of
geolocated data, but also of first-person knowledge of their surrounding context.

Similar proposals have recently appeared that cover some of the aspects of
such a system, either from the individual sensoring perspective, closer to multi-
agent based systems [6] or from big data techniques applied to social network
streams by combining statistical analysis with semantic interpretation [7]. How-
ever, such proposals work at a granularity level that is either too high or too
low: in the former approach there is, in principle, no centralised mechanism to
maintain global aggregations; in the latter, systems do not take advantage of the
end-user terminals and their potential dispersion in time and space. In this paper



we present a system that can work at both levels, leveraging global aggregations
with local awareness to have the best possible picture of the context of the city.

Finally, the SUPERHUB recommender, by having a strong focus on the use
of semantically-enhanced contextual information, provides novelty to the state
of the art beyond the use of recommenders in the mobility domain.
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