Skip to main content

Uncertainty Based Hybrid Particle Swarm Optimization Techniques and Their Applications

  • Chapter
  • First Online:
Multi-objective Swarm Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 592))

  • 1090 Accesses

Abstract

In order to handle uncertainty in data, several uncertainty based models have been introduced. Perhaps the two most notable models among these are the fuzzy set introduced by Zadeh in 1965 and rough set introduced by Pawlak in 1982. These two models address two different aspects of uncertainty and these are complementary by nature. As a result their hybridization leads to better models. Particle Swarm Optimization (PSO) is an optimization technique that performs optimized search in the solution space for optimization by updation. In this chapter, we discuss on different types of PSOs and their application in classification, feature selection and rule generation. Further, we present several hybridization of PSO with fuzzy approach, rough approach and rough fuzzy approach in developing classification algorithms. Also, we discuss on a dynamic clustering algorithm which uses a rough fuzzy hybrid model embedded with PSO. We provide as an illustration the results of application of this algorithm on several real life data sets and provide its superiority through the computation of several index values for measuring classification accuracy like DB, D, \( \alpha , \rho , \alpha ^* \) and \( \gamma \). Also, we compile some other applications of PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. Perth (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm, systems, man and cybernetics. In: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 12–15 October 1997, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  3. Lin Li, X.: A particle swarm optimization and immune theory based algorithm for structure learning of Bayesian networks. Int. J. Database Theory Appl. 3(2), 61–69 (2010)

    Google Scholar 

  4. Menhas, M.I., Wang, L., Fei, M., Pan, H.: Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Syst. Appl. 39, 4390–4401 (2013)

    Article  Google Scholar 

  5. Hossen, S.Md., Rabbi, F., Rahman, M.Md: Adaptive particle swarm optimization (APSO) for multimodal function optimization. Int. J. Eng. Technol. 1(3), 98–103 (2009)

    Google Scholar 

  6. Xiao-Feng, X., Wen-Jun, Z., Zhi-Lian, Y..: Adaptive particle swarm optimization on individual level. In: International Conference on Signal Processing (ICSP), pp. 1215–1218. Beijing (2002)

    Google Scholar 

  7. Anuradha, J., Tisha, V.R., Tripathy B.K., Arulalan.: Diagnosis of ADHD using SVM algorithm. ACM Compute (2010)

    Google Scholar 

  8. Parsopoulos, K.E., Vrahatis, M.N.: Multiobjective Particle Swarm Optimization Approaches. Chapter II, pp. 20–42. IGI Global Publishers (2008)

    Google Scholar 

  9. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: a survey of the state-of-the-art. In: Technical Report EVOCINV-01-2006, Evolutionary Computation Group at CINVESTAV, Mexico, March 2006

    Google Scholar 

  10. Zadeh, L.A.: Fuzzy sets. Inf. control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Esquivel, S.C., Coello, C.A.C.: On the use of particle swarm optimization with multimodal functions. In: The 2003 Congress on Evolutionary Computation (CEC’03), vol. 2, pp. 1130–1136 (2003)

    Google Scholar 

  12. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(4), 131–156 (1997)

    Article  Google Scholar 

  14. Kohavi, R., John, G.H.: Wrappers for feature sub set selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  15. Whitney, A.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. C-20(9), 1100–1103 (1971)

    Google Scholar 

  16. Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: IEEE Congress on Evolutionary Computation (CEC’98), pp. 78–83. Anchorage (1998)

    Google Scholar 

  17. Liu, Y., Wang, G., Chen, H., Dong, H.: An improved particle swarm optimization for feature selection. J. Bionic Eng. 8(2), 191–200 (2011)

    Article  Google Scholar 

  18. Chen, Y.W., Lin, C.J.: Combination of feature selection approaches with SVM in credit scoring. Expert Syst. Appl. (37), 315–324 (2006)

    Google Scholar 

  19. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32, 29–38 (2008)

    Article  MATH  Google Scholar 

  20. Huang, C.L., Dun, J.F.: A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

    Article  Google Scholar 

  21. Tu, C.J., Chuang, L.Y., Chang, J.Y., Yang, C.H.: Feature selection using PSO-SVM, IAENG Int. J. Comput. Sci. 33(1), No. 18. IJCS (2007)

    Google Scholar 

  22. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  23. Knowles, J.D., Corne, D.W.: Approximating the non dominated front using the pareto archived evolution strategy. Mass. Inst. Technol. Evoluti. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  24. Sousa, T., Silva, A., Neves, A.: Particle swarm based data mining algorithms for classification tasks. Parallel Comput. 30, 767–783 (2004)

    Article  Google Scholar 

  25. Ozbakir, L., Delice, Y.: Exploring comprehensible classification rules from trained neural networks integrated with a time-varying binary particle swarm optimizer. Eng. Appl. Artif. Intell. (2010). doi:10.1016/j.engappai.2010.11.008

  26. De Falco, I., Della Cioppa, A., Tarantino, E.: Facing classification problems with particle swarm optimization. Appl. Soft Comput. 7(3), 652–658 (2007)

    Article  Google Scholar 

  27. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum, New York (1981)

    Book  Google Scholar 

  28. Mehdizadeh, E.: A fuzzy clustering using PSO algorithm. Int. J. Manag. Sci. Eng. Manag. 4(4), 311–320 (2009)

    Google Scholar 

  29. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, The Netherlands (1991)

    Book  MATH  Google Scholar 

  30. Pawlak, Z.: Rough set. Int. J. Inf. Comput. Sci. 341–356 (1982)

    Google Scholar 

  31. Mitra, S., Banka, H., Pedrycz, W.: Rough—fuzzy collaborative clustering. IEEE Trans. Syst., Man Cybern.—Part B: Cybern. 36(4), 795–805 (2006)

    Article  Google Scholar 

  32. Mitra, S., Pedrycz, W., Barman, B.: Shadowed C means: integrating fuzzy and rough clustering. Pattern Recognit. 43, 1282–1291 (2010)

    Google Scholar 

  33. Hung, C.C., Hendri, P., Chen, K., Letkeman.: Multispectal image classification using rough set theory and particle swarm optimization. In: Advances in Geosciences and Remote Sensing— 2009), pp. 569–595 (2009)

    Google Scholar 

  34. Abido, M.A.: Two-level of non-dominated solutions approach to multi objective particle swarm optimization. ACM 978-1-59593-697-4/07/0007 (2007)

    Google Scholar 

  35. Maji, P., Pal, S.K.: RFCM: a hybrid clustering algorithm using rough and fuzzy sets. Fundamenta Informaticae 80, 475–496 (2007)

    MATH  MathSciNet  Google Scholar 

  36. Alatas, B., Akin, E.: Rough particle swarm optimization and its applications in data mining. Soft Comput. (12), 1205–1218 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anuradha, J., Tripathy, B.K. (2015). Uncertainty Based Hybrid Particle Swarm Optimization Techniques and Their Applications. In: Dehuri, S., Jagadev, A., Panda, M. (eds) Multi-objective Swarm Intelligence. Studies in Computational Intelligence, vol 592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46309-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46309-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46308-6

  • Online ISBN: 978-3-662-46309-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics