Skip to main content

Use of Time-Dependent Spatial Maps of Communication Quality for Multi-robot Path Planning

  • Conference paper
  • First Online:
Ad-hoc Networks and Wireless (ADHOC-NOW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8629))

Included in the following conference series:

  • 1203 Accesses

Abstract

We consider the path planning problem of mobile networked agents (e.g., robots) that have to travel towards assigned target locations. Robots’ path planners have to optimally balance potentially conflicting goals: keep the traveled distance within an assigned maximum value while, at the same time, let the robot reliably and effectively communicate with other robots in the multi-robot network, and reduce the risk of collisions. We propose a solution approach based on the integration of two components: a link quality predictor based on supervised learning, and a path optimizer, based on a mathematical programming formulation. The predictor is built offline and yields spatial predictions of the expected communication quality of the wireless links in terms of packet reception rate. Exploiting shared information about planned trajectories, these spatial predictions are used online by the robots to build time-dependent spatial maps of communication quality, to iteratively assess the best path to follow considering both local and prospective links, and to plan paths accordingly. To deal robustly with dynamic environments, path planning is implemented as a multi-stage scheme using a receding horizon strategy. The framework is evaluated in realistic simulation scenarios, showing the effectiveness of using the spatial predictor for the effective online planning of network-aware trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feo Flushing, E., Nagi, J., Di Caro, G.A.: A mobility-assisted protocol for supervised learning of link quality estimates in wireless networks. In: Proceedings of the International Conference on Computing, Networking and Communications (ICNC), pp. 137–143 (2012)

    Google Scholar 

  2. Di Caro, G.A., Kudelski, M., Feo Flushing, E., Nagi, J., Ahmed, I., Gambardella, L.: On-line supervised incremental learning of link quality estimates in wireless networks. In: Proceedings of the 12th IEEE/IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 69–76 (2013)

    Google Scholar 

  3. Kudelski, M., Gambardella, L., Di Caro, G.A.: A mobility-controlled link quality learning protocol for multi-robot coordination tasks. In: Proceedings of the IEEE ICRA, pp. 5024–5031 (2014)

    Google Scholar 

  4. Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control Syst. Technol. 19(2), 423–431 (2011)

    Article  Google Scholar 

  5. Hsieh, M.A., Cowley, A., Kumar, V., Taylor, C.J.: Maintaining network connectivity and performance in robot teams. J. Field Robot. 25(1–2), 111–131 (2008)

    Article  Google Scholar 

  6. Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)

    Article  Google Scholar 

  7. Hollinger, G.A., Singh, S.: Multirobot coordination with periodic connectivity: theory and experiments. IEEE Trans. Robot. 28(4), 967–973 (2012)

    Article  Google Scholar 

  8. Tardioli, D., Mosteo, A.R., Riazuelo, L., Villarroel, J.L., Montano, L.: Enforcing network connectivity in robot team missions. Int. J. Robot. Res. 29(4), 460–480 (2010)

    Article  Google Scholar 

  9. Ghaffarkhah, A., Mostofi, Y.: Path planning for networked robotic surveillance. IEEE Trans. Signal Process. 60(7), 3560–3575 (2012)

    Article  MathSciNet  Google Scholar 

  10. Thunberg, J., Ögren, P.: A mixed integer linear programming approach to pursuit evasion problems with optional connectivity constraints. Auton. Rob. 31(4), 333–343 (2011)

    Article  Google Scholar 

  11. Gil, S., Feldman, D., Rus, D.: Communication coverage for independently moving robots. In: Proceedings of IEEE/RSJ IROS, pp. 4865–4872 (2012)

    Google Scholar 

  12. Yan, Y., Mostofi, Y.: Robotic router formation in realistic communication environments. IEEE Trans. Robot. 28(4), 810–827 (2012)

    Article  Google Scholar 

  13. Grøtli, E.I., Johansen, T.A.: Path planning for UAVs under communication constraints using SPLAT! and MILP. J. Intel. Robot. Syst. 65(1–4), 265–282 (2011)

    Google Scholar 

  14. Fink, J., Ribeiro, A., Kumar, V.: Robust control of mobility and communications in autonomous robot teams. IEEE Access 1, 290–309 (2013)

    Article  Google Scholar 

  15. Malmirchegini, M., Mostofi, Y.: On the spatial predictability of communication channels. IEEE Trans. Wireless Commun. 11(3), 964–978 (2012)

    Article  Google Scholar 

  16. Lindhe, M., Johansson, K.H.: Adaptive exploitation of multipath fading for mobile sensors. In: Proceedings of the IEEE ICRA, pp. 1934–1939 (2010)

    Google Scholar 

  17. Feo Flushing, E., Kudelski, M., Nagi, J., Gambardella, L., Di Caro, G.A.: Poster abstract: link quality estimation - a case study for on-line supervised learning in wireless sensor networks. In: Langendoen, K., Hu, W., Ferrari, F., Zimmerling, M., Mottola, L. (eds.) Real-World Wireless Sensor Networks. LNEE, vol. 281, pp. 97–101. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

    Article  MATH  Google Scholar 

  19. NS-3. Discrete-event network simulator for Internet systems (2013). http://www.nsnam.org

Download references

Acknowledgments

This research has been partially funded by the Swiss National Science Foundation (SNSF) Sinergia project SWARMIX, project number CRSI22_133059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Feo Flushing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Caro, G.A., Feo Flushing, E., Gambardella, L.M. (2015). Use of Time-Dependent Spatial Maps of Communication Quality for Multi-robot Path Planning. In: Garcia Pineda, M., Lloret, J., Papavassiliou, S., Ruehrup, S., Westphall, C. (eds) Ad-hoc Networks and Wireless. ADHOC-NOW 2014. Lecture Notes in Computer Science(), vol 8629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46338-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46338-3_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46337-6

  • Online ISBN: 978-3-662-46338-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics