Skip to main content

The Web Within: Leveraging Web Standards and Graph Analysis to Enable Application-Level Integration of Institutional Data

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XIX

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 8990))

  • 739 Accesses

Abstract

The expansion of the Web and of our capacity of producing and storing information have had a profound impact on the way we organize, manipulate and share data. We have seen an increased specialization of database back-ends and data models to respond to modern application needs: text indexing engines organize unstructured data, standards and models were created to support the Semantic Web, Big Data requirements stimulated an explosion of data representation and manipulation models. This complex and heterogeneous environment demands unified strategies that enable data integration and, especially, cross-application, expressive querying.

Here we present a new approach for the integration of structured and unstructured data within organizations. Our solution is based on the Complex Data Management System (CDMS), a system being developed to handle data typical of complex networks. The CDMS enables a relationship-centric interaction with data that brings many advantages to the institutional data integration scenario, allowing applications to rely on common models for data querying and manipulation.

In our framework, diverse data models are integrated in a unifying RDF graph. A novel query model allows the combination of concepts from information retrieval, databases, and complex networks into a declarative query language that extends SPARQL. This query language enables flexible correlation queries over the unified data, enabling support for a wide range of applications such as CMSs, recommendation systems, social networks, etc. We also introduce Mappers, a data management mechanism that simplifies the integration of heterogeneous data and that is integrated in the query language for further flexibility. Experimental results from real data demonstrate the viability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/standards/semanticweb/data.

  2. 2.

    http://www.w3.org/2001/sw/rdb2rdf/.

  3. 3.

    A good overview of applications and systems can be found in http://markorodriguez.com/2013/01/09/on-graph-computing/.

  4. 4.

    as defined previously, a keyword query would also be a node in the graph.

  5. 5.

    KWQUERY is a syntactical shortcut that represents an underlying mapper as in Sect. 6.1.

  6. 6.

    The second Avatar record refers to a lesser known Singaporean film (introducing a reputation metric in the query would certainly lower its score).

  7. 7.

    http://dbpedia.org/.

  8. 8.

    http://www.w3.org/RDF/.

  9. 9.

    http://www.w3.org/2001/sw/rdb2rdf/.

References

  1. Alves, H., Santanchè, A.: Abstract framework for social ontologies and folksonomized ontologies. In: SWIM. ACM (2012)

    Google Scholar 

  2. Amer-Yahia, S., Case, P., Rölleke, T., Shanmugasundaram, J., Weikum, G.: Report on the DB/IR panel. SIGMOD Record 34(4), 71–74 (2005)

    Article  Google Scholar 

  3. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-weight linked data publication from relational databases. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009 (2009)

    Google Scholar 

  4. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI, pp. 2670–2676 (2007)

    Google Scholar 

  5. Berners-Lee, T.: Giant global graph. Online posting, 2007. http://dig.csail.mit.edu/breadcrumbs/node/215

  6. Bizer, C.: D2rq - treating non-rdf databases as virtual rdf graphs. In: Proceedings of the 3rd International Semantic Web Conference (ISWC2004) (2004)

    Google Scholar 

  7. Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. Inf. Retr. 15(1), 54–92 (2012)

    Article  Google Scholar 

  8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)

    MATH  Google Scholar 

  9. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR technologies: what is the sound of one hand clapping? In: CIDR, pp. 1–12 (2005)

    Google Scholar 

  10. Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60, 329–412 (2011)

    Article  Google Scholar 

  11. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

    Article  Google Scholar 

  12. Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)

    Article  Google Scholar 

  13. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll. In: WWW, pp. 100, 26 March 2004

    Google Scholar 

  14. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  15. Gomes Jr., L., Costa, L., Santanchè, A.: Querying complex data. Technical Report IC-13-27, Institute of Computing, University of Campinas, October 2013

    Google Scholar 

  16. Gomes Jr., L., Jensen, R., Santanchè, A.: Query-based inferences in the Complex Data Management System. In: Structured Learning: Inferring Graphs from Structured and Unstructured Inputs (SLG-ICML) (2013)

    Google Scholar 

  17. Gomes Jr., L., Jensen, R., Santanchè, A.: Towards query model integration: topology-aware, ir-inspired metrics for declarative graph querying. In: GraphQ-EDBT (2013)

    Google Scholar 

  18. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  19. Hassanzadeh, O., Consens, M.: Linked movie data base. In: Proceedings of the 2nd Workshop on Linked Data on the Web (LDOW2009) (2009)

    Google Scholar 

  20. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-\(k\) query processing techniques in relational database systems. ACM Comput. Surveys 40(4), 11:1–11:58 (2008)

    Article  Google Scholar 

  21. Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design: Relational and Dimensional Techniques. Wiley, Chichester (2003)

    Google Scholar 

  22. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (2003)

    Book  Google Scholar 

  23. Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity search. In: PODS (2006)

    Google Scholar 

  24. Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: SPARK2: Top-k keyword query in relational databases. TKDE 23(12), 1763–1780 (2011)

    Google Scholar 

  25. Markovitch, S., Gabrilovich, E.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI (2007)

    Google Scholar 

  26. Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., Kaltenböck, M.: SCMS – Semantifying content management systems. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 189–204. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. CoRR, abs/1004.1001 (2010)

    Google Scholar 

  28. Rodriguez, M.A., Pepe, A., Shinavier, J.: The dilated triple. In: Badr, Y., Chbeir, R., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence: Advanced Semantic Technologies, pp. 3–16. Springer, London (2010)

    Chapter  Google Scholar 

  29. Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)

    Article  Google Scholar 

  30. Schenk, S., Staab, S.: newblock Networked graphs: a declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the web. In: WWW (2008)

    Google Scholar 

  31. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A federation layer for distributed query processing on linked open data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 481–486. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surveys 22(3), 183–236 (1990)

    Article  Google Scholar 

  33. Weikum, G., Kasneci, G., Ramanath, M., Suchanek, F.: Database and information-retrieval methods for knowledge discovery. Commun. ACM 52(4), 56–64 (2009)

    Article  Google Scholar 

  34. White, S. Smyth, P.: Algorithms for estimating relative importance in networks. In: SIGKDD (2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Frank Wm. Tompa for feedback and encouragement in earlier stages of this work. This work was partially financed by the Microsoft Research FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project and PRONEX-FAPESP), INCT in Web Science (CNPq 557.128/2009-9) and CAPES, with individual grants from CAPES and FAPESP (process 2012/15988-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Gomes Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomes, L., Santanchè, A. (2015). The Web Within: Leveraging Web Standards and Graph Analysis to Enable Application-Level Integration of Institutional Data. In: Hameurlain, A., Küng, J., Wagner, R., Bianchini, D., De Antonellis, V., De Virgilio, R. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XIX. Lecture Notes in Computer Science(), vol 8990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46562-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46562-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46561-5

  • Online ISBN: 978-3-662-46562-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics