Abstract
In the last decade social networks are becoming denser and denser, which makes analyzing their structures and properties very difficult. However, for certain task, if we can remove the inactive users and irrelevant links, the network will be amazingly sparse and tractable. In this paper we propose the Nonparametric Topic-aware Sparsification (NTAS) algorithm, which can simplify social networks for a specific task. To determine whether a link is relevant to the task, we adopt nonparametric topic model to analyze the topic distribution of links and the task. We empirically demonstrate that our algorithm can return a more sparse network compared with other state-of-the-art methods in the task of network monitoring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)
Mei, Q., Cai, D., Zhang, D., Zhai, C.: Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web, pp. 101–110. ACM (2008)
Pathak, N., DeLong, C., Banerjee, A., Erickson, K.: Social topic models for community extraction. In: In the 2nd SNA-KDD Workshop, vol. 8 (2008)
Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A temporal context-aware model for user behavior modeling in social media systems (2014)
Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 529–537. ACM (2011)
Foti, N.J., Hughes, J.M., Rockmore, D.N.: Nonparametric sparsification of complex multiscale networks. PLoS one 6(2), e16431 (2011)
Bonchi, F., Morales, G.D.F., Gionis, A., Ukkonen, A.: Activity preserving graph simplification. Data Min. Knowl. Disc. 27(3), 321–343 (2013)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent Semantic Analysis, pp. 424–440 (2007)
Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Technol. 38(1), 188–230 (2004)
Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)
Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2(6), 1152–1174 (1974)
Acknowledgments
This work was supported by the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences (No. XDA06030200) and 863 projects (No.2011AA01A103).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, W., Wang, P., Zhou, C., Hu, Y., Guo, L. (2015). Nonparametric Topic-Aware Sparsification of Influence Networks. In: Yueming, L., Xu, W., Xi, Z. (eds) Trustworthy Computing and Services. ISCTCS 2014. Communications in Computer and Information Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47401-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-662-47401-3_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47400-6
Online ISBN: 978-3-662-47401-3
eBook Packages: Computer ScienceComputer Science (R0)