Skip to main content

Nonparametric Topic-Aware Sparsification of Influence Networks

  • Conference paper
  • First Online:
Trustworthy Computing and Services (ISCTCS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 520))

Included in the following conference series:

  • 979 Accesses

Abstract

In the last decade social networks are becoming denser and denser, which makes analyzing their structures and properties very difficult. However, for certain task, if we can remove the inactive users and irrelevant links, the network will be amazingly sparse and tractable. In this paper we propose the Nonparametric Topic-aware Sparsification (NTAS) algorithm, which can simplify social networks for a specific task. To determine whether a link is relevant to the task, we adopt nonparametric topic model to analyze the topic distribution of links and the task. We empirically demonstrate that our algorithm can return a more sparse network compared with other state-of-the-art methods in the task of network monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Mei, Q., Cai, D., Zhang, D., Zhai, C.: Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web, pp. 101–110. ACM (2008)

    Google Scholar 

  3. Pathak, N., DeLong, C., Banerjee, A., Erickson, K.: Social topic models for community extraction. In: In the 2nd SNA-KDD Workshop, vol. 8 (2008)

    Google Scholar 

  4. Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A temporal context-aware model for user behavior modeling in social media systems (2014)

    Google Scholar 

  5. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 529–537. ACM (2011)

    Google Scholar 

  6. Foti, N.J., Hughes, J.M., Rockmore, D.N.: Nonparametric sparsification of complex multiscale networks. PLoS one 6(2), e16431 (2011)

    Article  Google Scholar 

  7. Bonchi, F., Morales, G.D.F., Gionis, A., Ukkonen, A.: Activity preserving graph simplification. Data Min. Knowl. Disc. 27(3), 321–343 (2013)

    Article  MATH  Google Scholar 

  8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  9. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent Semantic Analysis, pp. 424–440 (2007)

    Google Scholar 

  10. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Technol. 38(1), 188–230 (2004)

    Article  Google Scholar 

  11. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)

    MathSciNet  Google Scholar 

  12. Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2(6), 1152–1174 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences (No. XDA06030200) and 863 projects (No.2011AA01A103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, W., Wang, P., Zhou, C., Hu, Y., Guo, L. (2015). Nonparametric Topic-Aware Sparsification of Influence Networks. In: Yueming, L., Xu, W., Xi, Z. (eds) Trustworthy Computing and Services. ISCTCS 2014. Communications in Computer and Information Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47401-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47401-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47400-6

  • Online ISBN: 978-3-662-47401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics