Abstract
We give polynomial time algorithms for quantitative (and qualitative) reachability analysis for Branching Markov Decision Processes (BMDPs). Specifically, given a BMDP, and given an initial population, where the objective of the controller is to maximize (or minimize) the probability of eventually reaching a population that contains an object of a desired (or undesired) type, we give algorithms for approximating the supremum (infimum) reachability probability, within desired precision \(\epsilon > 0\), in time polynomial in the encoding size of the BMDP and in \(\log (1/\epsilon )\). We furthermore give P-time algorithms for computing \(\epsilon \)-optimal strategies for both maximization and minimization of reachability probabilities. We also give P-time algorithms for all associated qualitative analysis problems, namely: deciding whether the optimal (supremum or infimum) reachability probabilities are 0 or 1. Prior to this paper, approximation of optimal reachability probabilities for BMDPs was not even known to be decidable.
Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum (minimum) non-reachability probabilities are given by the greatest fixed point (GFP) solution \(g^* \in [0,1]^n\) of a corresponding monotone max (min) Probabilistic Polynomial System of equations (max/min-PPS), \(x=P(x)\), which are the Bellman optimality equations for a BMDP with non-reachability objectives. We show how to compute the GFP of max/min PPSs to desired precision in P-time.
The full version of this paper is available at arxiv.org/abs/1502.05533. Research partially supported by the Royal Society and by NSF Grant CCF-1320654. Alistair Stewart’s research supported by I. Diakonikolas’s EPSRC grant EP/L021749/1.
Preview
Unable to display preview. Download preview PDF.
References
Bozic, I., et al.: Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2, e00747 (2013)
Bonnet, R., Kiefer, S., Lin, A.W.: Analysis of probabilistic basic parallel processes. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 43–57. Springer, Heidelberg (2014)
Brázdil, T., Brozek, V., Kucera, A., Obdrzálek, J.: Qualitative reachability in stochastic BPA games. Inf. Comput. 209(8), 1160–1183 (2011)
Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Reachability in recursive Markov decision processes. Inf. Comput. 206(5), 520–537 (2008)
Chen, T., Dräger, K., Kiefer, S.: Model checking stochastic branching processes. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 271–282. Springer, Heidelberg (2012)
Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for monotone systems of min-max-polynomial equations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 698–710. Springer, Heidelberg (2008)
Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. Logical Methods in Computer Science 2(1), 1–31 (2006)
Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-type branching processes and stochastic context-free grammars. In: Proc. 44th ACM Symposium on Theory of Computing (STOC) (2012)
Etessami, K., Stewart, A., Yannakakis, M.: Polynomial time algorithms for branching markov decision processes and probabilistic min(max) polynomial bellman equations. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 314–326. Springer, Heidelberg (2012)
Full preprint of this paper (2015). arXiv:1502.05533
Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with positive rewards. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 711–723. Springer, Heidelberg (2008)
Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. Journal of the ACM (2015)
Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. Journal of the ACM 56(1) (2009)
Pliska, S.: Optimization of multitype branching processes. Management Sci., 23(2), 117–124 (1976/1977)
Reiter, J.G., Bozic, I., Chatterjee, K., Nowak, M.A.: TTP: tool for tumor progression. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 101–106. Springer, Heidelberg (2013)
Rothblum, U., Whittle, P.: Growth optimality for branching Markov decision chains. Math. Oper. Res. 7(4), 582–601 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Etessami, K., Stewart, A., Yannakakis, M. (2015). Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations, and Reachability for Branching Markov Decision Processes. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-662-47666-6_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47665-9
Online ISBN: 978-3-662-47666-6
eBook Packages: Computer ScienceComputer Science (R0)