
ar
X

iv
:1

50
4.

08
26

5v
1

 [
cs

.D
S]

 3
0

A
pr

 2
01

5

Optimal competitiveness for the Rectilinear Steiner Arborescence

problem

Erez Kantor ∗

erezk@csail.mit.edu

Shay Kutten †

kutten@ie.technion.ac.il

Abstract

We present optimal online algorithms for two related known problems involving Steiner
Arborescence, improving both the lower and the upper bounds. One of them is the well studied
continuous problem of the Rectilinear Steiner Arborescence (RSA). We improve the lower
bound and the upper bound on the competitive ratio for RSA from O(logN) and Ω(

√
logN)

to Θ(logN

log logN
), where N is the number of Steiner points. This separates the competitive ratios

of RSA and the Symetric-RSA (SRSA), two problems for which the bounds of Berman and
Coulston is STOC 1997 were identical. The second problem is one of the Multimedia Content
Distribution problems presented by Papadimitriou et al. in several papers and Charikar et al.
SODA 1998. It can be viewed as the discrete counterparts (or a network counterpart) of RSA.
For this second problem we present tight bounds also in terms of the network size, in addition
to presenting tight bounds in terms of the number of Steiner points (the latter are similar to
those we derived for RSA).

Keywords: Online Algorithm, Approximation Algorithm, Video-on-Demand

1 Introduction

Steiner trees, in general, have many applications, see e.g. [12] for a rather early survey that already
included hundreds of items. In particular, Steiner Arborescences1 are useful for describing the
evolution of processes in time. Intuitively, directed edges represent the passing of time. Since there
is no way to go back in time in such processes, all the directed edges are directed away from the
initial state of the problem (the root), resulting in an arborescence. Various examples are given
in the literature such as processes in constructing a Very Large Scale Integrated electronic circuits
(VLSI), optimization problems computed in iterations (where it was not feasible to return to results
of earlier iterations), dynamic programming, and problems involving DNA, see, e.g. [4, 6, 13, 3].
Papadimitriou at al. [18, 19] and Charikar et al. [5] presented the discrete version, in the context
of Multimedia Content Delivery (MCD) to model locating and moving caches for titles on a path
graph. The formal definition of (one of the known versions) of this problem, Directed-MCD,
appears in Section 2.

∗CSAIL, MIT, Cambridge, MA. Supported in a part by NSF Awards 0939370-CCF, CCF-1217506 and CCF-AF-
0937274 and AFOSR FA9550-13-1-0042.

†Department of Industrial Engineering and Management, IE&M, Technion, Haifa, Israel. Supported in part by
the ISF, Israeli ministry of science and by the Technion Gordon Center.

1A Steiner arborescence is a Steiner tree directed away from the root.

1

http://arxiv.org/abs/1504.08265v1

We present new tight lower and upper bounds for two known interrelated problems involving
Steiner Arborescences: Rectilinear Steiner Arborescence (RSA) and Directed-MCD (DMCD).
We also deal indirectly with a third known arborescence problem: the Symmetric-RSA (SRSA)
problem by separating its competitive ratio from that of RSA. That is, when the competitive
ratios of RSA and SRSA were discussed originally by Berman and Coulston [4], the same lower
and upper bounds were presented for both problems.

The RSA problem: This is a rather heavily studied problem, described also e.g. in [16, 21, 4,
17, 9]. A rectilinear line segment in the plane is either horizontal or vertical. A rectilinear path
contains only rectilinear line segments. This path is also y-monotone (respectively, x-monotone) if
during the traversal, the y (resp., x) coordinates of the successive points are never decreasing. The
input is a set of requests R = {r1 = (x1, y1), ..., rN = (xN , yN)} called Steiner terminals (or points)
in the positive quadrant of the plane. A feasible solution to the problem is a set of rectilinear
segments connecting all the N terminals to the origin r0 = (0, 0), where the path from the origin to
each terminal is both x-monotone and y-monotone (rectilinear shortest path). The goal is to find
a feasible solution in which the sum of lengths of all the segments is the minimum possible. The
above mentioned third problem, SRSA was defined in the same way, except that the above paths
were not required to be x-monotone (only y-monotone).

Directed-MCD defined in Section 2 is very related to RSA. Informally, one difference is that it
is discrete (Steiner points arrive only at discrete points) whiling RSA is continuous. In addition,
in DMCD each “X coordinates” represents a network nodes. Hence, the number of X coordinates
is bounded from above by the network size. This resemblance turned out to be very useful for us,
both for solving RSA and for solving DMCD.

The online version of RSA [4]: the given requests (terminals) are presented to the algorithm
with nondecreasing y-coordinates. After receiving the i’th request ri = (xi, yi) (for i = 1, ..., N),
the on-line RSA algorithm must extend the existing arborescence solution to incorporate ri. There
are two additional constraints: (1) a line, once drawn (added to the solution), cannot be deleted,
and (2) a segment added when handling a request ri, can only be drawn in the region between
yi−1 (the y-coordinates of the previous request ri−1) and upwards (grater y-coordinates). If an
algorithm obeys constraint (1) but not constraint (2), then we term it a pseudo online algorithm.
Note that quite a few algorithms known as “online”, or as “greedy offline” fit this definition of
“pseudo online”.

Additional Related works. Online algorithms for RSA and SRSA were presented by Berman
and Coulston [4]. The online algorithms in [4] were O(logN) competitive (where N was the number
of the Steiner points) both for RSA and SRSA. Berman and Coulston also presented Ω(

√
logN)

lower bounds for both continuous problems. Note that the upper bounds for both problems were
equal, and were the squares of the lower bounds. A similar gap for MCD arose from results of
Halperin, Latombe, and Motwani [11], who gave a similar competitive ratio of O(logN), while
Charikar, Halperin, and Motwani [5] presented a lower bound of Ω(

√
log n) for various variants of

MCD, where n was the size of the network. Their upper bound was again the square of the lower
bound: O(min{log n, logN}) (translating their parameter p to the parameter n we use).

Berman and Coulston also conjectured that to close these gaps, both the upper bound and the
lower bound for both problems could be improved. This conjecture was disproved in the cases of
SRSA and of MCD on undirected line networks [15]. The latter paper closed the gap by presenting

2

an optimal competitive ratio of O(
√
logN) for SRSA and O(min{√n,√logN}) for MCD on the

undirected line network with n nodes. They left the conjecture of Berman and Coulston open
for RSA and for MCD on directed line networks. In the current paper, we prove this conjecture
(for RSA and for Directed-MCD), thus separating RSA and SRSA in terms of their competitive
ratios.

Charikar, Halperin, and Motwani [5] also studied the the offline case for MCD, for which they
gave a constant approximation. The offline version of RSA is heavily studied. It was attributed to
[17] who gave an exponential integer programming solution and to [9] who gave an exponential time
dynamic programming algorithm. An exact and polynomial algorithm was proposed in [23], which
seemed surprising, since many Steiner problems are NP Hard. Indeed, difficulties in that solution
were noted by Rao, Sadayappan, Hwang, and Shor [21], who also presented an approximation
algorithm. Efficient algorithms are claimed in [7] for VLSI applications. However, the problem was
proven NP-Hard in [22]. (The rectilinear Steiner tree problem was proven NPH in [10]). Heuristics
that are fast “in practice” were presented in [8]. A PTAS was presented by [16]. An optimal
logarithmic competitive ratio for MCD on general undirected networks was presented in [2]. They
also present a constant off-line approximation for MCD on grid networks.

On the relation between this paper and [15]. An additional contribution of the current
paper is the further development of the approach of developing (fully) online algorithms in two
stages: (a) develop a pseudo online algorithm; and (b) convert the pseudo online into an online
algorithm. As opposed to the problem studied in [15] where a pseudo online algorithm was known,
here the main technical difficulty was to develop such an algorithm. From [15] we also borrowed
an interesting twist on the rather common idea to translate between instances of a discrete and a
continuous problems: we translate in both directions, the discrete solutions helps in optimizing the
continuous one and vice versa.

Our Contributions. We improve both the upper and the lower bounds of RSA to show that
the competitive ratio is Θ(logN

log logN). This proves the conjecture for RSA of Berman and Coulston
[4] and also separates the competitive ratios of RSA and SRSA. We also provide tight upper and
lower bound for Directed-MCD, the network version of RSA (both in terms of n and of N). The
main technical innovation is the specific pseudo online algorithm we developed here, in order to
convert it later to an online algorithm. The previously known offline algorithms for RSA and for
DMCD where not pseudo online, so we could not use them. In addition to the usefulness of the
new algorithm in generating the online algorithm, this pseudo online algorithm may be interesting
in itself: It is O(1)-competitive for DMCD and for RSA (via the transformation) for a different
(but rather common) online model (where each request must be served before the next one arrives,
but no time passes between requests).

Paper Structure. Definitions are given in Section 2. The pseudo online algorithm Square
for DMCD is presented and analyzed in Section 3. In Section 4, we transform Square to a
(fully) online algorithm D-Lineon for DMCD. Then, Section 5 describes the transformation of
the online DMCD algorithm D-Lineon to become an optimal online algorithm for RSA, as well
as a transformation back from RSA to DMCD to make the DMCD online algorithm also optimal
in terms of n (not just N). These last two transformations are taken from [15]. Finally, a lower
bound is given in Section 6. The best way to understand the algorithms in this paper may be from

3

a geometric point of view. Hence, we added multiple drawings to illustrate both the algorithms
and the proofs.

2 Preliminaries

The network×time grid (Papadimitriou et. al, [19]). A directed line network L(n) = (Vn, En)
is a network whose node set is Vn = {1, ..., n} and its edge set is En = {(i, i + 1) | i = 1, ..., n − 1}.
Given a directed line network L(n) = (Vn, En), construct ”time-line” graph L(n) = (Vn, En),
intuitively, by “layering” multiple replicas of L(n), one per time unit, where in addition, each
node in each replica is connected to the same node in the next replica (see Fig. 1). Formally,
the node set Vn contains a node replica (sometimes called just a replica) (v, t) of every v ∈ Vn,
coresponding to each time step t ∈ N. That is, Vn = {(v, t) | v ∈ Vn, t ∈ N}. The set of directed
edges En = Hn ∪ An contains horizontal directed edges Hn = {((u, t), (v, t)) | (u, v) ∈ En, t ∈ N},
connecting network nodes in every time step (round), and directed vertical edges, called arcs,
An = {((v, t), (v, t + 1)) | v ∈ Vn, t ∈ N}, connecting different copies of Vn. When n is clear from
the context, we may write just X rather than Xn, for every X ∈ {V,E,V,H,A}. Notice that L(n)
can be viewed geometrically as a grid of n by ∞ whose grid points are the replicas. Following Fig.
1, we consider the time as if it proceeds upward. We use such geometric presentations also in the
text, to help clarifying the description.

u

t=4

wv

t=2
t

((u,2),(w,2))

((v,3),(v,4))

t=3

Figure 1: An example of a time-line graph L(n) = (V, E = H ∪ A). Each node in V is represented
by a circle; each horizontal edge in H is represented by a horizontal segment (see, as an example,
((u, 2), (w, 2)) ∈ H for an horizontal directed edge in the marked rectangle on the right); each arc in A
is represented by a horizontal arrow (see, as an example, ((v, 3), (v, 4)) ∈ A for an arc in the marked
rectangle on the left).

The DMCD problem. We are given a directed line network L(n), an origin node v0 ∈ V , and
a set of requests R ⊆ V. A feasible solution is a subset of directed edges F ⊆ E such that for every
request r ∈ R, there exists a path in F from the origin (v0, 0) to r. Intuitively a directed horizontal
edge ((u, t), (v, t)) is for delivering a copy of a multimedia title from node u to node v at time t.

A directed vertical edge (arc) ((v, t), (v, t + 1)) is for storing a copy of the title at node v from
time t to time t+ 1. For convenience, the endpoints VF of edges in F are also considered parts of
the solution. For a given algorithm A, let FA be the solution of A, and let cost(A,R), (the cost of
algorithm A), be |FA|. (We assume that each storage cost and each delivery cost is 1.) The goal
is to find a minimum cost feasible solution. Let opt be the set of edges in some optimal solution
whose cost is |opt|.

4

Online DMCD. In the online versions of the problem, the algorithm receives as input a sequence
of events. One type of events is a request in the (ordered) set R of requests R = {r1, r2, ..., rN},
where the requests times are in a non-decreasing order, i.e., t1 ≤ t2 ≤ ... ≤ tN (as in RSA). A
second type of events is a time event (this event does not exists in RSA), where we assume a clock
that tells the algorithm that no additional requests for time t are about to arrive (or that there are
no requests for some time t at all). The algorithm then still has the opportunity to complete its
calculation for time t (e.g., add arcs from some replica (v, t) to (v, t+1)). Then time t+ 1 arrives.

When handling an event ev, the algorithm only knows the following: (a) all the previous requests
r1, ..., ri; (b) time t; and (c) the solution arborescence Fev it constructed so far (originally containing
only the origin). In each event, the algorithm may need to make decisions of two types, before
seeing future events:

(1.DMCD) If the event is the arrival of a request ri = (vi, ti), then from which current (time ti) cache (a
point already in the solution arborescence Fev when ri arrives) to serve ri by adding horizontal
directed edges to Fev.

(2.DMCD) If this is the time event for time t, then at which nodes to store a copy for time t + 1, for
future use: select some replica (or replicas) (v, t) already in the solution Fev and add to Fev

an edge directed from (v, t) to (v, t+ 1).

Note that at time t, the online algorithm cannot add nor delete any edge with an endpoint that
corresponds to previous times. Similarly to e.g. [2, 18, 20, 19, 5], at least one copy must remain in
the network at all times.

General definitions and notations. Consider an interval J = {v, v + 1, ..., v + ρ} ⊆ V and
two integers s, t ∈ N, s.t. s ≤ t. Let J [s, t] (see Fig. 2) be the “rectangle subgraph” of L(n)
corresponding to vertex set J and time interval [s, t]. This rectangle consists of the replicas and
edges of the nodes of J corresponding to every time in the interval [s, t]. For a given subsets V ′ ⊆ V,
H′ ⊆ H and A′ ⊆ A, denote by (1) V ′[s, t] replicas of V ′ corresponding to times s, ..., t. Define
similarly (2)H′[s, t] for horizontal edges of H′; and (3) A′[s, t] arcs of A′. (When s = t, we may write
X [t] = X [s, t], for X ∈ {J,V ′,H′}.) Consider also two nodes v, u ∈ V s.t. u ≤ v. Let PH[(u, t), (v, t)]

t

J
3 4 5 6

s

2

Figure 2: A subgraph rectangle J [s, t], where J = {2, 3, 4, 5, 6}.

be the set of horizontal directed edges of the path from (u, t) to (v, t). Let PA[(v, s), (v, t)] be the
set of arcs of the path from (v, s) to (v, t). Let dist→∞((u, s), (v, t)) be the “directed” distance from

5

(u, s) to (v, t) in L∞ norm. Formally, dist→∞((u, s), (v, t)) = max{t − s, v − u}, if s ≤ t and u ≤ v
and dist→∞((u, s), (v, t)) =∞, otherwise.

3 Algorithm Square, a pseudo online algorithm

This section describes a pseudo online algorithm named Square for the DMCD problem. Devel-
oping Square was the main technical difficulty of this paper. Consider a requests set R = {r0 =
(0, 0), r1 = (v1, t1), ..., rN = (vN , tN)} such that 0 ≤ t1 ≤ t2 ≤ ... ≤ tN . When Algorithm Square
starts, the solution includes just r0 = (0, 0). Then, Square handles, first, request r1, then, request
r2, etc... In handling a request ri, the algorithm may add some edges to the solution. (It never
deletes any edge from the solution.) After handling ri, the solution is an arborescence rooted at
r0 that spans the request replicas r1, ..., ri. Denote by Square(i) the solution of Square after
handling the i’th request. For a given replica r = (v, t) ∈ V and a positive integer ρ, let

S[r, ρ] = [v − ρ, v]× [t− ρ, t]

denotes the rectangle subgraph (of the layered graph) whose top right corner is r induced by the
set of replicas that contains every replica q such that (1) there is a directed path in the layer graph
from q to r; and (2) the distance from q to r in L∞ is at most ρ. For each request ri ∈ R, for
i = 1, ..., N , Square performs the following (The pseudo code of Square is given in Fig. 4 and
an example of an execution in Fig. 3).

qclosei

ρSQ(i)

(a)

ri

5ρSQ(i)

qservei

qclosei

(b)

ri

(c)

tail(i)

qservei

qclosei

ri

Figure 3: Square execution example. (a) in case (SQ3), Square(i − 1) (Square’s solution after

handling point ri−1); q
close
i defines the radius ρSQ(i). (b) the serving replica qservei is the leftmost in

S[ri, 5ρSQ(i)] ∩ Square(i− 1). (c) Square(i).

(SQ1) Add the vertical path from (0, ti−1) to (0, ti).

(SQ2) Let replica qclosei = (uclosei , sclosei) be such that qclosei is already in the solution Square(i−1)

and (1) the distance in L∞ norm from qclosei to ri is minimum (over the replicas already

in the solution); and (2) over those replicas choose the latest, that is, sclosei = max{t ≤
ti | (uclosei , t) ∈ Square(i − 1)}. Define the radius of ri as ρSQ(i) = dist→∞(qclosei , ri) =

max{|vi − uclosei |, |ti − sclosei |}. Call qclosei the closest replica of the i’th request.

6

(SQ3) Choose a replica qservei = (uservei , sservei) ∈ S[ri, 5 · ρSQ(i)] such that qservei is already in
the solution Square(i− 1) and uservei is the leftmost node (over the nodes corresponding to

replicas of S[ri, 5 · ρSQ(i)] that are already in the solution). Call qservei the serving replica of
the i’th request.

(SQ4) Deliver a copy from qservei to ri via (uservei , ti). This is done by storing a copy in node uservei

from time sservei to time ti, and then delivering a copy from (uservei , ti) to (vi, ti)
2.

(SQ5) Store a copy in uservei from time ti to time ti + 4 · ρSQ(i) 3.

Intuitively, steps SQ1–SQ4 utilize previous replicas in the solution, while step SQ5 prepares the
contribution of ri to serve later requests. Note that Square is not an online algorithm, since in step
SQ4, it may add to the solution some arcs corresponding to previous times. Such an action cannot be
preformed by an online algorithm. Denote by FSQ = HSQ∪ASQ the feasible solution Square(N)
of Square. Let Base(i) = {(u, ti) | uservei ≤ u ≤ vi} and let Base = ∪Ni=1Base(i) (notice that

Base ⊆ FSQ because of step SQ4). Similarly, let tail(i) = {(uservei , t) | ti ≤ t ≤ ti + 4ρSQ(i)} be
the nodes of the path PA[(uservei , ti), (u

serve
i , ti + 4 · ρSQ(i))] (added to the solution in step SQ5)

and let tail = ∪Ni=1tail(i). Note that FSQ is indeed an arborescence rooted at (0, 0).

• FSQ ← {(0, 0)} is the Square’s solution after handling request ri−1.
• When request ri arrives do:

1. FSQ ← FSQ ∪ PA[(0, ti−1), (0, ti)].

2’. ρSQ(i)← min{dist→∞(q, ri) | q ∈ FSQ}.

2. Choose a replica qclosei = (uclosei , sclosei) such that qclosei is in Square(i− 1) and

(a) dist→∞(qclosei , ri) = ρSQ(i); and

(b) sclosei = max{t ≤ ti | (uclosei , t) ∈ Square(i− 1)}.

3. Choose the serving replica qservei = (uservei , sservei) ∈ S[ri, 5 · ρSQ(i)] ∩ FSQ such that

uservei = min
{

u | ∃s such that (u, s) ∈ S[ri, 5 · ρSQ(i)] ∩ FSQ
}

.

⊲ uservei is the leftmost node corresponding to the replicas of S[ri, 5 · ρSQ(i)] ∩ FSQ

4. FSQ ← FSQ ∪ PA[(uservei , sservei), (uservei , ti)] ∪ PH[(uservei , ti), (vi, ti)].

⊲ deliver a copy from qservei to ri via (uservei , ti).

5. FSQ ← FSQ ∪ PA[(uservei , ti), (u
serve
i , ti + 4ρSQ(i))].

⊲ leave a copy at uservei from current time ti to time ti + 4ρSQ(i).

Figure 4: Algorithm Square.

2More formally, add the arcs of PA[(uservei , sservei), (uservei , ti)] and the horizontal directed edges of
PH[(uservei , ti), (vi, ti)] to the solution.

3 More formally, add the arcs of PA[(uservei , ti), (u
serve
i , ti + 4 · ρSQ(i))] to the solution.

7

3.1 Analysis of Square

First, bound the cost of Square as a function of the radii (defined in SQ2).

Observation 3.1 cost(Square,R) ≤ 14
∑N

i=1 ρ
SQ(i).

Proof: For each request ri ∈ R, Algorithm Square pay a cost of 10ρSQ(i) to the path between
ri’s serving replica qservei a ri itself (see step SQ4) and additional cost of 4ρSQ(i) for serving a copy
to all replicas of tail(i) (see step SQ5).

It is left to bound from below the cost of the optimal solution as a function of the radii.

Quarter balls. Our analysis is based on the following notion. A quarter-ball, or a Q-ball, of
radius ρ ∈ N centered at a replica q = (v, t) ∈ V contains every replica from which there exists
a path of length ρ to q 4 . For every request ri ∈ R, denote by Q-ballsq(ri, ρ

SQ(i)) 5 (also
Q-ballsq(i) for short) the quarter-ball centered at ri with radius ρSQ(i).

Intuitively, for every request ri ∈ R′ (where R′ obey the observation’s condition below), opt’s
solution starts outside of Q-ballsq(i), and must reach ri with a cost of ρSQ(i) at least.

Observation 3.2 Consider some subset R′ ⊆ R of requests. If the Q-balls, Q-ballsq(i) and
Q-ballsq(j), of every two requests ri, rj ∈ R′ are edges disjoint, then |opt| ≥∑

ri∈R′ ρSQ(i).

Intuitively, for every request ri ∈ R′ (where R′ obey the observation’s condition), opt’s solution
starts outside of Q-ballsq(i), and must reach ri with a cost of ρSQ(i) at least.
Proof: Consider some request ri ∈ R′. Any directed path from (v0, 0) to ri must enter the quarter
ball Q-ballsq(i) of radius ρSQ(i) to reach ri. The length of this path inside the Q-ballsq(i) is
ρSQ(i). All the Q-balls of R′ are disjoint, which implies the observation.

3.1.1 Covered and uncovered requests

Consider some request ri = (vi, ti) and its serving replica qservei = (uservei , sservei) (see step SQ3).

We say that ri is covered, if vi − uservei ≥ ρSQ(i) (see SQ2 and SQ3). Intuitively, this means the

solution FSQ is augmented by the whole top of the square Square[ri, ρ
SQ(i)]; see Figure 3 (a)

and (b). Otherwise, we say that ri is uncovered. Let cover = {i | ri is a covered request} and let
uncover = {i | ri is an uncovered request}. Given Observation 3.2, the following lemma implies
that

|opt| ≥
∑

i∈cover
ρSQ(i). (1)

Lemma 3.3 Consider two covered requests ri and rj .
Then, the quarter balls Q-ballsq(i) and Q-ballsq(j) are edge disjoint.

Proof: Assume without loss of generality that, i > j. Thus, PH[(uservej , tj), (vj , tj)] (see SQ4) is

already in the solution when handling request i. Also, ρSQ(j) ≥ vj − uservej , since rj is covered.
Consider three cases.

4 This is, actually, the definition of the geometric place “ball”. We term them “quarter ball” to emphasize that
we deal with directed edges. That is, it is not possible to reach (v, t) from above nor from the right.

5 Note that Q-ballsq(ri, ρ
SQ(i)) is different from S [ri, ρ

SQ(i)], since the first ball considers distances in L2 norm
and the last considers distances in L∞ norm.

8

Case 1. vj ≤ vi, see Figure 5. Since, ri is covered, ρSQ(i) ≤ dist→∞(rj , ri) = max{vi − vj , ti − tj}.
If vj ≤ vi − ρSQ(i), then these two Q-balls are edges disjoint. Otherwise, vi − vj < ρSQ(i).

Then ρSQ(i) ≤ ti − tj which implies that these two Q-balls are edges disjoint.

Case 2. vj − ρSQ(j) ≤ vi ≤ vj , see Figure 6. Then, also vi ≥ uservej , since rj is covered. Thus, in

particular, (vi, tj) ∈ Square(i − 1). Hence, ρSQ(i) ≤ dist→∞((vi, tj), ri = (vi, ti)) = ti − tj ,
which implies that these two Q-balls are edges disjoint.

Case 3. vi < vj − ρSQ(j). The Q-ball of rj is on the right of any possible (radius) Q-ball with ri as a
center. Thus, these Q-balls are edges disjoint.

(a)

vj ≤ vi − ρSQ(i)

Q-ballSQ(j)

qclosej

rj

Q-ballSQ(i)

qclosei

ri

Q-ballSQ(i)

Q-ballSQ(j)

(b)

ti − ρSQ(i) ≥ tjrj

ri

qclosej

Figure 5: Two covered requests are edge disjoint, case 1; (a) Q-ballsq(i) is on the right of

Q-ballsq(j), since vj ≤ vi−ρSQ(i); (b) vi−ρSQ(i) ≤ vj ≤ vi implying that the whole Q-ballsq(i)
is above Q-ballsq(j).

ti − tj ≥ ρSQ(i)

(vi, tj)
qservei

vi ≤

ri

rj

vjuservei ≤

Figure 6: Two covered requests are edge disjoint, case 2.

By the above lemma and observations 3.1, 3.2, and Inequality (1), we have:

Observation 3.4 Square’s cost for covered requests is no more than 14 · opt.

It is left to bound the cost of Square for the uncovered requests.

9

3.1.2 Overview of the analysis of the cost of uncovered requests

Unfortunately, unlike the case of covered requests, balls of two uncovered requests may not be
disjoint. Still, we managed to have a somewhat similar argument that we now sketch. (The formal
analysis appears later in Subsection 3.2.) Below, we partition the balls of uncovered requests into
disjoint subsets. Each has a representative request, a root. We show that the Q-ball of roots are
edge disjoint. This implies by Observation 3.1 and Observation 3.2 that the cost Square pays for
the roots is smaller than 14 times the total cost of an optimal solution. Finally, we show that the
cost of Square for all the requests in each subset is at most twice the cost of Square for the root
of the subset. Hence, the total cost of Square for the uncovered requests is also just a constant
times the total cost of the optimum.

To construct the above partition, we define the following relation: ball Q-ballsq(j) is the child
of Q-ballsq(i) (for two uncovered requests ri and rj) intuitively, if the Q-ballsq(i) is the first ball
(of a request later then rj) such that Q-ballsq(i) and Q-ballsq(j) are not edge disjoint. Clearly,
this parent-child relation induces a forest on the Q-balls of uncovered requests. The following
observation follows immediately from the definition of a root.

Observation 3.5 The quarter balls of every two root requests are edge disjoint.

Proof: Consider two root requests ri and rj . Assume W.O.L.G that j < i. Also assume, toward
contradiction that Q-ballsq(i) and Q-ballsq(j) are not edge disjoint. By the definition of the
child parent relationship, either rj is child of ri, or rj is a child of some other request rℓ for some
j < ℓ < i. In both cases, rj has a parent, hence rj is not a root request which contradict to choice
of rj as a root request. The observation follow.

The above observation together with Observation 3.2, implies the following.

Observation 3.6 The cost of Square for the roots is 14 · |opt| at most.

It is left to bound the cost that Square pays for the balls in each tree (in the forest of Q-balls)
as a constant function of the cost it pays for the tree root. Specifically, we show that the sum of
the radii of the Q-balls in the tree (including that of the root) is at most twice the radius of the
root. This implies the claim for the costs by Observation 3.1 and Observation 3.2. To show that,
given any non leaf ball Q-ballsq(i) (not just a root), we first analyze only Q-ballsq(i)’s “latest
child” Q-ballsq(j). That is, j = maxk{Q-ballsq(k) is a child of Q-ballsq(i)}. We show that
the radius of the latest child is, at most, a quarter of the radius of Q-ballsq(i). (See Property
(P1) of Lemma 3.14 in Subsection 3.2.) Second, we show that the sum of the radii of the rest of the
children (all but the latest child) is, at most, a quarter of the radius of Q-ballsq(i) too. Hence,
the radius of a parent ball is at least twice as the sum of its children radii. This implies that the
sum of the radii of all the Q-balls in a tree is at most twice the radius of the root.

The hardest technical part here is in the following lemma that, intuitively, states that “a lot of
time” (proportional to the request’s radius) passes between the time one child ball ends and the
time the next child ball starts, see Fig. 7.

Lemma 3.7 Consider some uncovered request ri which has at least two children. Let Q-ballsq(j),
Q-ballsq(k) some two children of Q-ballsq(i), such that k < j. Then, tj−ρSQ(j) ≥ tk+4ρSQ(k).

Intuitively, the radius of a parent Q-ball is covered by the radii of its children Q-balls, plus
the tails (see step SQ5) between them. Restating the lemma, the time of the earliest replica in
Q-ballsq(j) is not before the time of the latest replica in tail(k). Intuitively, recall that the tail

10

tail(k)

i

kr

rj

ρSQ(k)

4ρSQ(k)

ρSQ(j)

ρSQ(i)

Q-ballSQ(i)

r

Figure 7: Geometric look on a parent Q-ballsq(i) (note that a Q-ball is a triangle) and its children
Q-ballsq(j) and Q-ballsq(k).

length of a request is much grater than the radius of the request’s Q-ball. Hence, the fact that
the radius of a latest child is at most a quarter of the radius of its parent, together with Lemma
3.7, imply that the sum of the childrens radii is less than half of the radius of the parent Q-ball.

The full proof of Lemma 3.7 (appears in Subsection 3.2) uses geometric considerations. Out-
lining the proof, we first establish an additional lemma. Given any two requests rj and rℓ such
that j > ℓ, the following lemma formalizes the following: Suppose that the node vj of request rj is
“close in space (or in the network)” to the node vℓ of another request rℓ. Then, the whole Q-ball
of rj is “far in time” (and later) from rj.

Lemma 3.8 Suppose that, j > ℓ and vj − ρSQ(j) + 1 ≤ userveℓ ≤ vj . Then, the time of the earliest

replica in Q-ballsq(j) is not before the time of the latest replica in tail(ℓ), i.e., tj − ρSQ(j) ≥
tℓ + 4ρSQ(ℓ).

Intuitively, Lemma 3.8 follows thanks to the tail left in step SQ5 of Square, as well as to the
action taken in SQ3 for moving userve further left of uclose. In the proof of Lemma 3.7, we show
that in the case that two requests rk and rj are siblings, either (1) they satisfy the conditions of
Lemma 3.8, or (2) there exists some request rℓ such that k < ℓ < j such that rℓ and rj satisfy the
conditions of Lemma 3.8. Moreover, the time of the last replica in tail(ℓ) is even later then the
time of the last replica in tail(k). In both cases, we apply Lemma 3.8 to show that the time of
the earliest replica in Q-ballsq(j) is not before the time of the latest replica in tail(k) as needed
for the lemma.

To summarize, we show (1) For covered requests the cost of Square is O(1) of |opt|; see
Observation 3.4. (2) For uncovered requests, we prove two facts: (2.a) the Q-balls of the root
requests are edges disjoint, and hence by Observation 3.6, the sum of their radii is O(1) of |opt|
too. (2.b) On the other hand, the sum of root’s radii is at least half of the sum of the radii of all
the uncovered requests. This establishes Theorem 3.9 (which prove appears in Subsection 3.2).

Theorem 3.9 Algorithm Square is O(1)-competitive for DMCD under the pseudo online model.

11

3.2 Formal analysis of the cost of uncovered requests

We start with a formal definitions of the forest of parent-child relationships.

Forest of balls. For any uncovered request ri, define the following notations.

1. Let parent(i)
△
= j be the minimal index grater than i such thatQ-ballsq(i) andQ-ballsq(j)

are not edges disjoint, if such exists, otherwise parent(i)
△
=⊥.

2. children(i)
△
= {j | parent(j) = i}.

3. tree(i)
△
=

⋃

j∈children(i) tree(j), if children(i) 6= ∅, otherwise tree(i)
△
= {i}.

4. roots = {i | parent(i) =⊥}.

(We also abuse the definition and say that request rj is child of request ri; and j is child of i, if
Q-ballsq(j) is child of Q-ballsq(i).)

We now, state four observations about uncovered requests. The main lemmas use these obser-
vations heavily. Recall that, qclosei = (uclosei , sclosei) is the closest replica of ri (see SQ2).

Observation 3.10 The radius of an uncovered request is determined by the time difference from
its closest replica. That is, if a request ri is uncovered, then ρSQ(i) = ti − sclosei .

Proof: If ri is uncovered, then vi − uservei < ρSQ(i). In addition, vi − uclosei ≤ vi − uservei , since

uservei ≤ uclosei (see SQ2). Thus, vi − uclosei < ρSQ(i) too. Therefore, ρSQ(i) = ti − sclosei , since

ρSQ(i) = dist→∞(qclosei , ri) = max{vi − uclosei , ti − sclosei } (see SQ2).

Observation 3.11 The replicas of the “rectangle-graph” [vi−5ρSQ(i), uservei −1]× [ti−5ρSQ(i), ti]
are not in Square(i).

Proof: Assume by the way of contradiction that some replica q = (w, t) ∈ [vi − 5ρSQ(i), uservei −
1] × [ti − 5ρSQ(i), ti] is in Square(i). This implies that vi − 5ρSQ(i) ≤ w < uservei , contradicting
the choice (in step SQ3) of node uservei of the serving replica qservei = (uservei , sservei) as the leftmost

node over all replicas that are in the solution and in S[ri, 5 · ρSQ(i)].

Observation 3.12 Consider some request ri. Assume that its closest replica qclosei) is added to

Square’s solution when handling request rj (for some j < i). Then, sclosei ≥ tj (the time of the
i’th closest replica is not before the time tj of rj).

Proof: The replica qclosei = (uclosei , sclosei) is added to the solution in step SQ4 or in step SQ5

while Square is handling request rj. If q
close
i is added to the solution in step SQ4, then the replica

(uclosei , tj) is added to the solution in that step too; otherwise, qclosei is added in step SQ5, and

then a replica of uclosei at time t (for some time t > tj) is added to the solution. This implies that

sclosei ≥ tj, see step SQ2 for the selection of qclosei .

Observation 3.13 If there exists a replica (w, ti) in the solution of Square(i − 1) such that
0 ≤ vi − w ≤ 5ρSQ(i), then ri is a covered request.

Proof: By the definition, ρSQ(i) ≤ dist→∞((w, ti), ri), since the distance from w to vi is a candidate
for ρSQ(i). The observation now follows from the definition of a covered request.

12

3.2.1 Parent ball in tree larger then its child

As promised (in the overview), Property (P1) of Lemma 3.14 below implies that a parent ball in
tree is at least four times larger than its “last child”. In fact, the lemma is more general (Property
(P2) is used in the proof of other lemmas)6.

Lemma 3.14 Consider two uncovered requests ri and rj such that i > j. If Q-ballsq(i) and
Q-ballsq(j) are not edges disjoint, then the following properties hold.
(P1) ρSQ(i) ≥ 4 · ρSQ(j); and
(P2) vj − ρSQ(j) ≤ vi < uservej ≤ vj (the leftmost replicas of Q-ballsq(j) are on left of ri; ri is
on the left of rj and even on the left of the j’th serving replica).

Proof: We first prove Property (P2). Since Q-ballsq(i) and Q-ballsq(j) are not edges disjoint,

vj − ρSQ(j) < vi and vi − ρSQ(i) < vj . (2)

Since also i > j (see Figure 8),

ρSQ(i) = ti − sclosei > ti − tj, (3)

where the equality below follows from Observation 3.10, since ri is uncovered; and the inequality
holds since, on the one hand, Q-ballsq(i) and Q-ballsq(j) are not edge disjoint, hence has a
common edge; on the other hand, (1) for every edge in Q-ballsq(i), at least one of its corre-
sponding replicas corresponds to time strictly grater than ti− ρSQ(i); however, non of the edges of
Q-ballsq(j) corresponding to replicas of time strictly grater than tj .

The left inequality of Property (P2) holds by the left inequality of (2). The right inequality of
Property (P2) holds trivially, see step SQ3. Assume by the way of contradiction that the remaining
inequality does not holds, i.e., vi ≥ uservej . Consider two cases.

Case 1. uservej ≤ vi ≤ vj , see Figure 9. Then, (vi, tj) is in Square(j) (Square’s solution after

handling request rj). Thus, ρSQ(i) ≤ dist→∞((vi, tj), ri = (vi, ti)) = ti − tj , contradicting
Inequality (3).

Case 2. vj ≤ vi, see Figure 10. In this case, ρSQ(i) ≤ dist→∞(rj, ri) = max{vi − vj , ti − tj}. By the

second inequality of (2), vi − vj < ρSQ(i). Hence, ρSQ(i) ≤ ti − tj. Again, this contradicts
Inequality (3).

These two cases shows that Property (P2) holds. We next show that Property (P1) holds too. For
that, consider two cases.

Case A: uclosei < vj − 5ρSQ(j). In other words, the closest replica qclosei = (uclosei , sclosei) to ri is on

the left of S[rj , 5ρSQ(j)] (see Figure 11). Recall that the closest replica qclosei defines the

radius ρSQ(i) (see SQ2), i.e., ρSQ(i) = max{vi − uclosei , ti − sclosei }. We have (the second
inequality bellow follows by substituting vi using the first inequality of (2)),

ρSQ(i) ≥ vi − uclosei ≥ (vj − ρSQ(j)) − (vj − 5ρSQ(j)) = 4ρSQ(j)

6 Actually, this lemma shows that property for any other child too, but for the other children this is not helpful,
since there may be too many of them.

13

vj − ρSQ(j) < vi

Q-ball
SQ(i)

tj
rj

ti
ri

ti − ρSQ(i)

Figure 8: Q-ballsq(i) and Q-ballsq(j) are not edges disjoint implying inequalities (2) and (3).

as needed for Property (P1). (Intuitively, since Q-ballsq(i) intersect Q-ballsq(j) on the

left, vi’s is at most ρSQ(j) left of vj; however, we assumed that uclosei is at least 5ρSQ(j) left

of vj; hence, ρ
SQ(i) ≥ 4ρSQ(j).)

Case B: vj − 5ρSQ(j) ≤ uclosei . We have that (see Figure 12),

vj − 5ρSQ(j) ≤ uclosei < uservej , (4)

where the inequality on the right holds by Property (P2) of this lemma. Assume that qclosei is
added to the solution when Square handles some request rk (for some k < i). By Observation

3.12, sclosei ≥ tk. If k ≥ j, then tk ≥ tj, which means that sclosei ≥ tj contradicting Inequality

(3). Thus k < j. Therefore, by Observation 3.11, qclosei 6∈ [vj − 5ρSQ(j), uservej − 1] × [tj −
5ρSQ(j), tj]. However, by Inequality (4), uservei ∈ [vj−5ρSQ(j), uservej −1]. Also by Inequality

(3), sclosei < tj . Hence, sclosei < tj − 5ρSQ(j), implying ρSQ(i) > 5ρSQ(j). Property (P1)
follows.

As showed above Property (P1) and Property (P2) hold, the lemma follows too.

rj

ti

tj

ri

≥ ρSQ(i)

(vi, tj)

uservej

Figure 9: ri is on the right of qservej and on the left of rj (case 1, uservej ≤ vi ≤ vj).

14

ri

rj

ρSQ(i) ≤ −−→dist∞(rj, ri)

Figure 10: ri is on the right of rj (case 2, vj ≤ vi).

vj − 5ρSQ(j) vj − ρSQ(j)

qclosei

4ρSQ(j)

uclosei
vi

rj

ri

Figure 11: qclosei is on the left of S[rj , 5ρSQ(j)].

3.2.2 Uncovered request has at least two children

The previous lemma suffices for the case that an uncovered request has only one child. We now
consider the case where an uncovered request has at least two children. We first establish Lemma
3.8 (which state in the proof overview) that deals with the case that the quarter ball of request rj is
later than the tail of some previous request rℓ (for some ℓ < j). Before representing the proof of this
lemma, let us make two “geometric” definitions. Consider two given requests rj and ri such that
i > j. Intuitively, Q-ballsq(i) is later than tail(j), if the time of earliest replica of Q-ballsq(i)
is not before the time of the last replica of tail(j). Formally, Q-ballsq(i) is later than tail(j),
if ti − ρSQ(i) ≥ tj + 4ρSQ(j). In addition, we say that tail(j) (which contains only replicas of

uservej) is in the range of Q-ballsq(i) (which contains replicas of the nodes of {vi−ρSQ(i), ..., vi}),
if vi−ρSQ(i) < uservej ≤ vi (in other words, uservej 6= vi−ρSQ(i) and there exists a replica of uservej

in Q-ballsq(i)).

15

≥ 5ρSQ(j)

ri

qclosei

5ρSQ(j)

rj

sclosei

ti

Figure 12: qclosei is below S[rj, 5ρSQ(j)].

Before presenting the proof of Lemma 3.8, let us remaind and a bit restate this lemma (using
formal notations).
Lemma 3.8. Consider two requests rℓ and rj such that j > ℓ. Suppose that, tail(ℓ) is in the

range of Q-ballsq(j), i.e., vj − ρSQ(j) < userveℓ ≤ vj. Then, Q-ballsq(j) is later than tail(ℓ).

That is, tj − ρSQ(j) ≥ tℓ + 4ρSQ(ℓ).
Proof of Lemma 3.8: Consider two requests rj and rℓ that satisfy the conditions of the lemma.
We begin by showing a slightly weaker assertion, that rj itself is later than tail(ℓ). That is,

tj > tℓ + 4ρSQ(ℓ). Assume the contrary, that tj ≤ tℓ + 4ρSQ(ℓ). Note that the replicas of tail(ℓ)
of time no later than tj (if such do exists) are “candidates” for the closest and the serving replicas
of the j’th request (since they belong to the solution Square(j − 1)). Thus,

ρSQ(j) ≤ dist→∞((userveℓ , tj), rj) = vj − userveℓ .

That is, the inequality holds since (userveℓ , tj) ∈ Square(j − 1) (see step SQ2); the equality holds
since rj = (vj, tj) and userveℓ ≤ vj . This means that the complete j’th quarter-ball is on the right
of the ℓ’th serving replica qserveℓ , i.e.,

userveℓ ≤ vj − ρSQ(j).

This contradicts the condition of the lemma, hence tj > tℓ + 4ρSQ(ℓ) as promised.

We now prove the lemma’s assertion that tj−ρSQ(j) ≥ tℓ+4ρSQ(ℓ). Denote by qlastℓ the latest

replica in tail(ℓ), i.e., qlastℓ = (userveℓ , tℓ + 4ρSQ(ℓ)). Note that qlast is a candidate for the closest

replica of the j’th request, since qlastℓ ∈ Square(j − 1) and the time of qlast is earlier than the

time of rj (i.e., tj > tℓ + 4ρSQ(ℓ)). Thus, the radius ρSQ(j) of the j’th request is at most as the

distance between qlastℓ to rj , see step SQ2. That is,

ρSQ(j) ≤ dist→∞(qlastℓ , rj). (5)

In addition, by the condition of the lemma,

vj − userveℓ < ρSQ(j). (6)

Thus, by Inequalities (5) and (6)

vj − userveℓ < dist→∞(qlastℓ , rj). (7)

16

Recall that, dist→∞(qlastℓ , rj) = max{vj − userveℓ , tj − (tℓ + 4ρSQ(ℓ))}. Hence, by Ineq. (7),

dist→∞(qlastℓ , rj) = tj − (tℓ + 4ρSQ(ℓ)).

Combining this with Ineq. (5), we get also that ρSQ(j) ≤ tj − (tℓ +4ρSQ(ℓ)). The Lemma follows.

Now, we are ready to show the main lemma (Lemma 3.7), which intuitively, shows that “a lot
of time” (proportional to the request’s radius) passes between the time the one child ball ends and
the time the next child ball starts.

We begins by remaining this lemma and restate it a bit (using formal notations).
Lemma 3.7. Consider some uncovered request ri such that |children(i)| ≥ 2. Let j, k ∈
children(i) such that k < j. Then, Q-ballsq(j) is later than tail(k). That is, tj − ρSQ(j) ≥
tk + 4ρSQ(k).

Proof of Lemma 3.7: We consider two cases regarding the relation between the serving replica
uservek of the k’th request and the node vj of the j’th replica.

Case 1: uservek ≤ vj. This is the simpler case. Apply Lemma 3.8 with the requests j and ℓ = k.
First, note that j > k as required to apply Lemma 3.8. To use this lemma, it is also required to
show that

vj − ρSQ(j) < uservek ≤ vj . (8)

The right inequality holds by the assumption of this case. The left inequality holds since

vj − ρSQ(j) < vi ≤ uservek ,

where the first inequality holds by Lemma 3.14 Property (P2) with i and j; the second inequality
holds by Lemma 3.14 Property (P2) with i and k. Thus, in this case, the lemma follows by Lemma
3.8.

Case 2: vj < uservek (that is, vj is on the left of the k’th serving replica uservek). Note that, unlike
the previous case, tail(k) is not in the range of Q-ballsq(j). Thus, the condition of Lemma 3.8
does not holds, and we cannot apply Lemma 3.8 with j and ℓ = k. Fortunately, we show that in
this case, we can use another request for which Lemma 3.8 can be applied. That is, we claim that
in this case, there exists a request rℓ that has the following three properties.

(P1) k < ℓ < j;

(P2) tail(ℓ) is in the range of Q-ballsq(j) (it satisfies the condition of Lemma 3.8); and

(P3) ρSQ(ℓ) ≥ ρSQ(k).

Note that if indeed such a request rℓ (that has the above three properties) does exists, then applying
Lemma 3.8, we will get that

tj − ρSQ(j) ≥ tℓ + 4ρSQ(ℓ) ≥ tk + 4ρSQ(k).

The last inequality follows from Property (P3) and since tj ≥ tℓ (since j > ℓ). This will imply the
lemma. It is left to show that such a request rℓ must exist. Let

rec = [vi, vj]× [tk − 4ρSQ(k), ti],

17

and let
ℓ∗ = min

l
Square(l) ∩ rec 6= ∅,

the index of the first request in which the solution Square(ℓ∗) contains some replicas in rec. Note
that rec is well defined since vi > vj by Lemma 3.14, Property (P2). We completes the proof by
showing that ℓ∗ exists and has properties (P1)-(P3). Hence, we can choose rℓ = rℓ∗ and the lemma
will follow.

1. ℓ∗ has Property (P1), i.e., k < ℓ∗ < j.
We first show that Square(k) does not contain any replica from the rectangle graph rec.
That is,

Square(k) ∩ rec = ∅. (9)

Then, we show that Square(j−1) does contain some replicas from the rectangle graph rec.
That is,

Square(j − 1) ∩ rec 6= ∅. (10)

Once we prove the above two inequalities, they will imply that ℓ∗ does exist, and in particular,
k < ℓ∗ < j as needed.

Proving Ineq (9): Note that when Algorithm Square handles rk, it does not add
any replica in the above rectangle, since it only adds replicas on the right hand side of
uservek . (Recall that, vi < vj and we are now analysing case (2) where vj < uservek , i.e.,
[vi, vj] ⊆ [vi, u

serve
k − 1].)

It is left to prove that Square(k−1) does not include a replica in rec. By Observation
3.11, it follows that Square(k) and Square(k− 1) do not contain any replica from the
“bottom part” of rec, since

{(v, t) ∈ rec | t ≤ tk} ⊆ [vk − 4ρSQ(k), uservek − 1]× [tk − 5ρSQ(k), tk],

where the inequality holds since vk − 4ρSQ(k) ≤ vi (by Lemma 3.14, Property (P2));
and vj < uservek (the assumption of case (2)).

It is left to prove that Square(k − 1) does not contain any replica from the “top part”
of rec.

Assume by the way of contradiction that there exists a replica q = (u, s) ∈ rec ∩
Square(k − 1) such that s > tk. Let rl be the request in which Square added q to
the solution (that is, when Square was handling rl, it added q to the solution). The
assumption that q ∈ Square(k − 1) implies that such a request rl does exist, and in
particular, l ≤ k − 1. Thus, tk ≥ tl, and hence, s > tl . This implies that q is added
to the solution in step SQ5 and q ∈ tail(l) = PA[(uservel , tl), (u

serve
l , tl + 4 · ρSQ(l))].

Therefore, also, (uservel , tk) ∈ tail(l) (since tl ≤ tk and tk ≤ s ≤ tl + 4 · ρSQ(l)), and in
particular,

(uservel , tk) ∈ Square(k − 1).

18

In addition, uservel ∈ [vi, vj], since q ∈ rec, and also

vk − ρSQ(k) ≤ vi ≤ uservel ≤ vj < uservek ≤ vk ,

where the first and the last inequalities hold by Lemma 3.14 Property (P2) with i and k;
the second and the third inequalities hold since uservel ∈ [vi, vj]; and the fourth inequality
holds by the assumption of case (2).

Therefore, in particular, 0 ≤ vk − uservel ≤ ρSQ(k). Thus, by Observation 3.13, rk is a
covered request, contradicting the assumption that k is child of i (covered requests have
no parents). Therefore, Square(k−1)∩rec = ∅ and (as mentioned) also Square(k)∩
rec = ∅. Hence, Ineq. (9) holds.

Proving Ineq. (10): Recall that the j’th closest replica qclosej = (uclosej , sclosej) ∈
Square(j − 1), see step SQ2. Thus, to show that Ineq. (10) holds, it is sufficient to

show that qclosej ∈ rec.

The assumption that Q-ballsq(j) and Q-ballsq(i) are not edge disjoint implies that
the j’th serving and closest replicas are on the right of ri. That is,

vj − ρSQ(j) < vi < uservej ≤ uclosej ≤ vj < uservek ,

where the first and the second inequalities hold by Lemma 3.14, Property (P2); the third
and the forth inequalities hold by steps SQ2 and SQ3; and the fifth inequality is the
assumption in the current case (2).

This implies, in particular, that

vj − ρSQ(j) < vi < uclosej ≤ vj . (11)

In addition, by Observation 3.10, the radius of an uncovered request is the time difference
between the request and its closest replica, that is, ρSQ(j) = tj−sclosej , and equivalently

sclosej = tj − ρSQ(j). (12)

Recall that k and j are children of i, thus Q-ballsq(j) and Q-ballsq(k) are edges
disjoint. This, together with inequalities (11) and (12) imply that

sclosej ≥ tk . (13)

Hence, qclosej ∈ rec by inequalities (11) and (13) and since sclosej ≤ tj ≤ ti. Thus, Ineq.
(10) holds as promised.

We have shown that inequalities (9) and (10) hold as we argued above this implies that rℓ∗

has Property (P1).

2. ℓ∗ has Property (P2), i.e., tail(ℓ∗) is in the range of Q-ballsq(j). Recall that i > j;
and Q-ballsq(i) and Q-ballsq(j) are not edge disjoint, thus by Lemma 3.14, Part 2,

vj − ρSQ(j) < vi < vj . (14)

19

We show that

vi < userveℓ∗ ≤ vj , (15)

which implies together with Ineq. (14) that vj−ρSQ(j) < userveℓ∗ < vj as needed (for showing
that tail(ℓ∗) is in the range of Q-ballsq(j)).

It remains to show that Ineq. (15) holds. Note that, on the one hand, the choice of rℓ∗ (as
the first request which the solution Square(ℓ∗) contains a replica in rec) implies that some
replica q′ = (u′, t′) ∈ rec is added to the solution when Square handles rℓ∗ . On the other
hands, when Algorithm Square handles rℓ∗ , it only adds replicas (in steps SQ4 and SQ5) to
the right of userveℓ∗ and to the left of vℓ∗ . Thus, on the one hand, vi ≤ u′ ≤ vj, and on the
other hand, userveℓ∗ ≤ u′ ≤ vℓ∗ . Hence, also

vi ≤ vℓ∗ and userveℓ∗ ≤ vj . (16)

This already establish the right inequality of (15). To show that its left inequality holds too,
assume toward contradiction that userveℓ∗ ≤ vi. Combining this with the left inequality of (16),
we have

userveℓ∗ ≤ vi ≤ vℓ∗ .

This implies that, when Algorithm Square handles rℓ∗ , it added the replica (vi, tℓ∗), in step
SQ4 to the solution. Hence, (vi, tℓ∗) ∈ Square(ℓ∗), and is a candidates for the i’th close
replica (see step SQ2). Thus,

ρSQ(i) ≤ dist→∞((vi, tℓ∗ , ri)) = ti − tℓ∗ .

Hence, the time of each of Q-ballsq(i)’s replicas is at least tℓ∗ . Recall that, tℓ∗ ≥ tk (since
ℓ∗ > k); and that in each edge e of Q-ballsq(i) at least one of e’s endpoints is corresponds
to time later than vi − ρSQ(i). Therefore, Q-ballsq(i) and Q-ballsq(k) are edge disjoint,
which contradicts the choice of k as a child of i. Hence, vi < userveℓ∗ , Ineq. (15) holds and ℓ∗

maintains Property (P2) as promised.

3. ℓ∗ has Property (P3), i.e., ρSQ(ℓ∗) ≥ ρSQ(k).

We first show that the time sserveℓ∗ of the serving replica qserveℓ∗ of the ℓ∗’th request is before

tk − 5ρSQ(k). That is,

sserveℓ∗ ≤ tk − 5ρSQ(k). (17)

The choice of ℓ∗ implies that Square(ℓ∗ − 1) ∩ rec = ∅. On the other hand, the serving
replica qserveℓ∗ does belong to Square(ℓ∗− 1) (see step SQ3). This implies, in particular, that

qserveℓ∗ = (userveℓ∗ , sserveℓ∗) 6∈ rec = [vi, vj]× [tk − 5ρSQ(k), ti] .

Recall that userveℓ∗ ∈ [vi, vj] by Ineq. (15), hence sserveℓ∗ 6∈ [tk − 5ρSQ(k), ti]. Inequality (17)
holds, since sserveℓ∗ ≤ tℓ∗ ≤ ti.

Summarizing what we know so far, tℓ∗ ≥ tk and sserveℓ∗ ≤ tk − 5ρSQ(k). Thus, on one hand,

dist→∞(qserveℓ∗ , rℓ∗) ≥ tℓ∗ − sserveℓ∗ ≥ 5ρSQ(k). (18)

20

On the other hand, qserveℓ∗ ∈ S[rℓ∗ , 5 · ρSQ(ℓ∗)] (see step SQ3), which implies that

5ρSQ(ℓ∗) ≥ dist→∞(qserveℓ∗ , rℓ∗) . (19)

Inequalities (18-19), imply that ρSQ(ℓ∗) ≥ ρSQ(k) as needed. Hence, ℓ∗ maintains Property
(P3).

We have shown that rℓ∗ maintains the three properties, implying the lemma for case (2) too.
[Lemma 3.7]

The previous lemma shows that a lot of time pass between the time of the last replica in the
quarter ball of a child and the time of first replica in the quarter ball of the next child. The next,
lemma use this property to show that the radius of a root is at least half of the sum of the radii of
its children in its tree.

Lemma 3.15 Consider some root request ri∗ ∈ roots. Then,

2ρSQ(i∗) ≥
∑

i∈tree(i∗)

ρSQ(i).

Proof: We begin by showing that the radius of each ball Q-ballsq(i) in the tree is at least,
twice the sum of the radii of its children. Consider some non leaf request ri ∈ tree(i∗) (that is,
children(i) 6= ∅). Let us first, show that

ρSQ(i) ≥ 2
∑

j∈children(i)

ρSQ(j). (20)

If children(i) = {j} (i has exactly one child), then (20) follows from property (P1) of Lemma
3.14. Otherwise, children(i) = {j1, j2..., jν}, where ν ≥ 2 and j1 ≤ j2 ≤ ... ≤ jν . (For simplicity,
to avoid double subscripts, we may write t(l) instead of tl.) By Lemma 3.7 with k = jl and j = jl+1,
it follows that

t(jl) + 4ρSQ(jl) + ρSQ(jl+1) ≤ t(jl+1), (21)

for every l = 1, ..., ν − 1. Now, (see Figure 13)

ρSQ(i) ≥ ti − t(j1) ≥ 4

ν−1
∑

l=1

ρSQ(jl), (22)

where the first inequality holds since the Q-ballsq(i) and Q-ballsq(j1) are not edges disjoint;
the second inequality holds by Inequality (21), since ti ≥ t(jν). In addition, by Property (P1) of
Lemma 3.14,

ρSQ(i) ≥ 4ρSQ(jν), (23)

which implies Inequality (20) that implies the lemma.

So far, we have shown that (1) the quarter-ball of the covered requests are edges disjoint; (2) the
quarter-ball of the root requests are edges disjoint, and hence by Observation 3.1 and Observation
3.2, the sum of their radii of the covered request and the root requests is no more than 28 times

21

ri

rl

kr

Q-ball
SQ(i)

ρSQ(l)

rj

4ρSQ(l)

ρSQ(k)

4ρSQ(k)

ρSQ(j)

ρSQ(i)

Figure 13: Geometric vision on a parent and its children relationships.

the cost of opt. On the other hand, the sum of root’s radii is at least half of the sum of the radii
of the uncovered requests. This, in fact, establishes Theorem 3.9.
Proof of Theorem 3.9: The ratio for covered request follows Inequality (1). For uncovered
requests it follows from Observation 3.5 and Observation 3.2 that |opt| ≥ ∑

i∈roots ρ
SQ(i).

Combining this with Lemma 3.15, we have, 2|opt| ≥ ∑

i∈uncover ρSQ(i). Thus, also, 3|opt| ≥
∑

ri∈R
ρSQ(i). The Theorem follows from Observation 3.1.

4 Algorithm D-Lineon - the “real” online algorithm

In this section, we transform the pseudo online algorithm Square of Section 3 into a (fully) online
algorithm D-Lineon for DMCD7. Let us first give some intuition here.

The reason Algorithm Square is not online, is one of the the actions it takes at step SQ4.
There, it stores a copy at the serving replica uservei for request ri from time sservei to time ti. This
requires “going back in time” in the case that the time sservei < ti. A (full) online algorithm cannot
perform such an action. Intuitively, Algorithm D-Lineon “simulates” the impossible action by (1)
storing additional copies (beyond those stored by Square); and (2) shifting the delivery to request
ri (step SQ4 of Square) from an early time to time ti of ri. It may happen that the serving node
uservei of ri does not have a copy (in Square) at ti. In that case, Algorithm D-Lineon also (3)
delivers first a copy to (uservei , ti) from some node w on the left of uservei . Simulation step (1) above
(that we term the storage phase) is the one responsible for ensuring that such a node w exists, and
is “not too far” from uservei .

For the storage phase, AlgorithmD-Lineon covers the network by “intervals” of various lengthes
(pathes that are subgraphs of the network graph). There are overlaps in this cover, so that each
node is covered by intervals of various lengthes. Let the length of some interval I be length(I).
Intuitively, given an interval I and a time t, if Square kept a copy in a node of interval I “recently”

7 We comment that it bears similarities to the transformation of the pseudo online algorithm Triangle to a (full)
online algorithm for undirected MCD in [15]. The transformation here is harder, since there the algorithm sometimes
delivered a copy to a node v from some node on v’s right, which we had to avoid here (since the network is directed
to the right).

22

(“recent” is proportional to length(I)), then D-Lineon makes sure that a copy is kept at the left
most node of this interval, or “nearby” (in some node in the interval just left to I).

Now, we (formally) illustrated Algorithm D-Lineon. We begins by giving some definitions.

Partitions of [1, n] into intervals Consider some positive integer δ to be chosen later. For
convenience, we assume that n is a power of δ. (It is trivial to generalize it to other values of
n.) Define logδ n + 1 levels of partitions of the interval [1, n]. In level l, partition [1, n] into n/δl

intervals, I〈δ〉l1, I〈δ〉l2,...,I〈δ〉ln/δl , each of size δl. That is, I〈δ〉lj = {(j − 1) · δl + k | k = 1, ..., δl}, for
every 1 ≤ j ≤ n/δl and every 0 ≤ l ≤ logδ n. Let I〈δ〉 be the set of all such intervals. When it is
clear from the context, we may omit 〈δ〉 from I〈δ〉 and I〈δ〉lj and write I and I lj , respectively. Let

ℓ(I) be the level of an interval I ∈ I, i.e., ℓ(I lj) = l. For a given interval I lj ∈ I, denote by
−→
NL(I lj),

for 1 < j ≤ n/δl the neighbor interval of level l that is on the left of I lj. That is,
−→
NL(I lj) = I lj−1.

Define that
−→
NL(Ii1) = {0}. Let

−→
N (I) =

−→
NL(I) ∪ I . We say that

−→
N (I) is the neighborhood of I.

Denote by I l(v) (for every node v ∈ V and every level l = 0, ..., logδ n) the interval in level l

that contains v. That is, I l(v) = I lk, where k =
⌊

v
δl

⌋

+ 1. The neighborhood
−→
N l(v) of a node v

contains all those nodes in the neighborhood
−→
N (I l(v)) (of the interval of level l of v) that are left

of v. That is,
−→
N l(v) = {u ∈ −→N (I l(v)) | u ≤ v}.

Active node Consider some node v ∈ V , some level 0 ≤ l ≤ logδ n. Node v is called 〈l, δ〉-active
at time t, if (Base ∪ tail) ∩ v[t− δl, t] 6= ∅. Intuitively, Algorithm Square kept a movie copy in
v, at least once, and “not to long” before time t. We say that v is 〈l, δ〉-stays-active, intuitively, if
v is not “just about to stop being 〈l, δ〉-active”, that is, if (Base ∪ tail) ∩ v[t− δl + 1, t] 6= ∅.

Let us now construct Ct+1, the set of replicas corresponding to the nodes that store copies
from time t to time t + 1 in a D-Lineon execution. Let C0 = {(v0 = 0, 0)}. (The algorithm
will also leave a copy in v0 = 0 always.) To help us later in the analysis, we also added an
auxiliary set commit ⊆ {〈I, t〉 | I ∈ I〈δ〉 and t ∈ N}. Initially, commit ← ∅. For each time
t = 0, 1, 2, ..., consider first the case that there exists at least one request corresponding to time
t, i.e., R[t] = {rj , ..., rk} 6= ∅. Then, for each request ri ∈ R[t], D-Lineon simulates Square to

find the radius ρSQ(i) and the serving node uservei of the serving replica qservei = (uservei , sservei) of
ri. Unfortunately, we may not be able to deliver, at time t, a copy from qservei may be t > sservei .
Hence, D-Lineon delivers a copy to ri via (uservei , t) (this is called the “delivery phase”). That is,
for each i = j, ..., k do:

(D1) choose a closest (to (uservei , t)) replica qoni = (uoni , t) on the left of uservei of time t = ti
already in the solution;

(D2) add the path Hon(i) = PH[qoni , ri] to the solution.

Let Von(i) = {r | (r, q) ∈ Hon(i)}. (Note that rj is served from Ct, after that, the path Hon(j) is
added; and rj+1 is served from Ct ∪ Von(j), etc.)

Recall that before the delivery phase, the replicas of Ct have copies. It is clear, that the delivery
phase of time t ensures that the replicas of Base[t]∪tail[t] have copies too. That is, at the end of
the delivery phase of time t, at least the replicas of Ct ∪ Base[t] ∪ tail[t] have copies. It is left to
decide which of the above copies to leave for time t+ 1. That is (the “storage phase”), D-Lineon

chooses the set Ct+1 ⊆ Ct∪Base[t]∪tail[t]. Initially, Ct+1 ← {(v0, t+1)}∪{(u, t+1) | (u, t) ∈ tail}
(as we choose to leave copy at the replicas of the tails and to leave a copy at v0 always). Then, for

23

each level l = 0, ..., logδ n, in an increasing order, the algorithm goes over and each node v = 1, ..., n,
in an increasing order, selects as follows.

(S1) Choose a node v such that (1) v is level 〈l, δ〉-stays-active at t; but (2) no replica has been

selected in level l v’s neighborhood (Ct+1 ∩
−→
N l(v)[t + 1] = ∅). If such a node v does exist,

then perform steps (S1.1–S1.3) below.

(S1.1) Add the tuple 〈I l(v), t〉 to the auxiliary set commit; we say that the interval I l(v) commits
at level l at time t.

(S1.2) Select a node u ∈ −→N l(v) such that a replica of u at time t is in Base[t] ∪ Ct (by Observation
4.1 below, such a replica does exist, recall that all these replicas have copies at this time).

(S1.3) Add (u, t+ 1) to Ct+1 and add the arc ((u, t), (u, t + 1)) to the solution.

The solution constructed byD-Lineon is denoted
−→F on =

−→Hon∪−→Aon, where
−→Hon = ∪Ni=1Hon(i)

represents the horizontal edges added in the delivery phases and
−→Aon = {((v, t), (v, t + 1)) |

(v, t+ 1) ∈ Ct+1 and t = 0, ..., tN} represents the arcs added in the storage phase.

Observation 4.1 (“Well defined”). If a node v ∈ V is level 〈l, δ〉-stays-active at time t, then

there exists a replica (u, t) ∈ Ct ∪Base[t] ∪ tail[t] such that (v, t) ∈ −→N l(v).

Proof: Consider some node v ∈ V and a time t. If 〈l, δ〉-stays-active at time t, then either
(v, t) ∈ Base ∪ tail or (v, t) 6∈ Base[t] ∪ tail[t] and v is also 〈l, δ〉-stays-active at time t− 1 (and

Ct ∩
−→
N l(v)[t] 6= ∅); hence, (Base[t] ∪ tail[t] ∪ Ct) ∩

−→
N l(v)[t] 6= ∅. The observation follows.

Moreover, a stays-active node v has a copy in its neighborhood longer (for an additional round).

Observation 4.2 (“A 〈l, δ〉-active node has a near by copy”). If a node v is 〈l, δ〉-active at

time t, then, either (1) (Base ∪ tail) ∩ −→N l(v)[t] 6= ∅, or (2)
−→
N l(v)[t] ∩ Ct 6= ∅.

Proof: Consider a node v ∈ V that is 〈l, δ〉-active at time t. If (Base ∪ tail) ∩ −→N l(v)[t] 6= ∅,
then the observation follows. Assume that (Base ∪ tail) ∩ −→N l(v)[t] = ∅. Then, the fact that v is
〈l, δ〉-active at t, but (v, t) 6∈ Base ∪ tail, implies also, that v is 〈l, δ〉-stays-active at time t − 1.
Thus, either (1) I l(v) commit at t− 1 (at step (S1.1)) which “cause” adding an additional replica

to Ct from
−→
N l(v) (at step (S1.2)); or (2) I l(v) does not commit at t − 1, since Ct has, already, a

replica from
−→
N l(v).

Observation 4.3 (“Bound from above on |−→Aon|”). |−→Aon \ PA[(v0, 0), (v0, tN)]| ≤ |commit|.

Proof: Let
−→Aon

−v0 =
−→Aon \ PA[(v0, 0), (v0, tN)]. Now we prove that |−→Aon

−v0 | = |commit|. Every

arc in
−→Aon

−v0 (that add at step (S1.3)) corresponds to exactly one tuple 〈I, t〉 of an interval I that
commits at time t (in step (S1.1)); and every interval commits at most once in each time t that

corresponds to exactly one additional arc in A−v0 . Thus, |−→Aon
−v0 | = |commit|. The observation

follows.

Analysis of D-Lineon We, actually, compare the cost of Algorithm D-Lineon to that of the
pseudo online Algorithm Square. The desired competitive ratio for D-Lineon will follow, since
we have shown that Square approximates the optimum (Theorem 3.9). A similar usage of a (very

different) pseudo online algorithm utilized in [15]. cost(D-Lineon,R)

cost(Square,R)
= O(logn

log logn). This implies

24

the desired competitive ratio of O(logn
log logn) by Theorem 3.9. We first show, that the number of

horizontal edges in
−→Hon (“delivery cost”) is O (δ · cost(Square,R)). Then, we show, that the the

number of arcs in
−→Aon (“storage cost”) is O (logδ n · cost(Square,R)). Optimizing δ, we get a

competitiveness of O(logn
log logn).

Delivery cost analysis. For each request ri ∈ R, the delivery phase (step (D2)) adds Hon(i) =
PH[qoni , ri] to the solution. Define the online radius of ri as ρ

on
i = d(qoni , ri). We have,

|−→Hon| ≤
N
∑

i=1

ρoni . (24)

It remains to bound ρoni as a function of ρSQ(i) from above. Restating Observation 4.2 somewhat

differently we can use the distance vi − uservei ≤ 5ρSQ(i) (see (SQ3)) and the time difference

ti − sservei ≤ 5ρSQ(i) for bounding ρoni . That is, we show that D-Lineon has a copy at time ti (of

ri) at a distance at most 10δρSQ(i) from uservei (of qservei of Square). Since, vi−uservei ≤ 5ρSQ(i),

D-Lineon has a copy at distance at most (10δ + 5)ρSQ(i) from vi (of ri).

Lemma 4.4 ρoni ≤ (10δ + 5) · ρSQ(i).

Proof: The following claim restating Observation 4.2 somewhat differently and help us to prove
that the serving replica has a “near by” copy.

Claim 4.5 Consider some base replica (v, t) ∈ Base∪tail and some ρ > 0, such that, t+ρ ≤ tN .
Then, there exists a replica (w, t+ ρ) ∈ Ct+ρ such that v − w ≤ 2δρ.

Proof: Assume that (v, t) ∈ Basetail. Consider an integer ρ > 0. Let l = ⌈logδ ρ⌉. Node v is

〈l, δ〉-active at time t + ρ. Thus, by Observation 4.2, there exists some node w ∈ −→N l(v) that keep

a copy for time t+ ρ. That is, a replica (w, t+ ρ) ∈ −→N l(v)[t + ρ] ∩ Ct+ρ does exists. The fact that

w ∈ −→N l(v) implies that v − w ≤ 2δl. The claim follows, since ρ > δl−1.

Recall that Square serves request ri = (vi, ti) from some base replica qservei = (uservei , sservei)
already include in the solution. That qservei may correspond to some earlier time. That is, sservei ≤
ti. In the case that sservei = ti, D-Lineon can serve ri from qservei . Hence, ρoni ≤ 5ρSQ(i). In
the more interesting case, sservei < ti. By Claim 4.5 (substituting v = uservei , t = sservei , and

ρ = ti − sservei ≤ 5ρSQ(i)), there exists a replica (w, ti) ∈ Cti such that uservei − w ≤ 10δρSQ(i).

Recall that vi − userve ≤ 5ρSQ(i) (see (SQ3)). Thus, vi − w ≤ (10δ + 5)ρSQ(i). Hence, ρoni ≤
(10δ + 5)ρSQ(i) as well.

The following corollary holds, by combining together the above lemma with Inequality (24).

Corollary 4.6 |−→Hon| ≤ (10δ + 5) · cost(Square,R).

Analysis of the storage cost By Observation 4.3, it remains to bound the size of |commit| from
above. Let commit(I, t) = 1 if 〈I, t〉 ∈ commit (otherwise 0). Hence, |commit| = ∑

I∈I

∑tN
t=0 commit(I, t).

We begin by bounding the number of commitments in D-Lineon made by nodes for level l = 0.
Observation 4.7 below follows directly from the definitions of commit and stays-active.

Observation 4.7
∑

I∈I:ℓ(I)=0

∑tN
t=0 commit(I, t) ≤

∣

∣FSQ
∣

∣.

Proof: Consider some commitment 〈I, t〉 ∈ commit, where interval I is of level ℓ(I) = 0. Interval
I commit at time t only if there exists a node v ∈ I such that v is 〈l = 0, δ〉-stays-active at t

25

(see step (S1) in D-Lineon). This stays-active status at time t occur only if (v, t) ∈ Base ∪ tail.
Hence, each base replica causes at most one commitment at t of one interval of level l = 0.

The following lemma is not really new. The main innovation of the paper is the special pseudo
online algorithm we developed here. The technique for simulating the pseudo online algorithm by
a “true” online one, as well as the following analysis of the simulation, are not really new. For
completeness we still present a (rather detailed) proof sketch for Lemma 4.8. Its more formal
analysis is deferred to the full paper (and a formal proof of a very similar lemma for very similar
mapping of undirected MCD) can be found in Lemma 3.8 of [14].

Lemma 4.8 |commit| ≤ (1 + 4 logδ n)
∣

∣FSQ
∣

∣.

Proof sketch: The 1 term in the statement of the lemma follows from Observation 4.7 for com-
mitments of nodes for level l = 0. The rest of the proof deals with commitments of nodes for level
l > 0.

Let us group the commitments of each such interval (of level l > 0) into “bins”. Later, we shall
“charge” the commitments in each bin on certain costs of the pseudo online algorithm Square.
Consider some level l > 0 interval I ∈ I〈δ〉 an input R. We say that I is a committed-interval if I
commits at least once in the execution of D-Lineon on R. For each committed-interval I (of level
ℓ(I) > 0), we define (almost) non-overlapping “sessions” (one session may end at the same time
the next session starts; hence, two consecutive sessions may overlap on their boundaries). The first
session of I does not contain any commitments (and is termed an uncommitted-session); it begins
at time 0 and ends at the first time that I contains some base replica. Every other session (of I)
contains at least one commitment (and is termed a committed-session).

Each commitment (in D-Lineon) of I belongs to some committed session. Denote by pivot(I)
the leftmost node in I, i.e., pivot(I) = min{v | v ∈ I}. Given a commitment 〈I, t〉 ∈ commit that
I makes at time t, let us identify 〈I, t〉’s session. Let t− < t be the last time (before t) there was a
base replica in pivot(I). Similarly, let t+ > t be the next time (after t) there will be a base replica
in pivot(I) (if such a time does exist; otherwise, t+ =∞). The session of commitment 〈I, t〉 starts
at t− and ends at t+. Similarly, when talking about the i’s session of interval I, we say that the
session starts at t−i (I) and ends at t+i (I). When I is clear from the context, we may omit (I)and
write t−i , t

+
i . A bin is a couple (I, i) of a committed-interval and the ith commitment-session of I.

Clearly, we assigned all the commitments (of level l > 0 intervals) into bins.
Before proceeding, we claim that the bins indeed do not overlap (except, perhaps, on their

boundaries). This is because the boundaries of the sessions are times when pivot(I) has a Base
replicas. At such a times t∗, I does not commit. This is because the pivot of I is 〈l = 0, δ〉-
stays-active at t∗ and hence keeps a copy. On the other hand, I is of higher level (we are dealing
with the case of l > 0); hence, it is treated later by the algorithm (see step (S1)). Hence, I indeed
does not commit at t∗. Therefore, there is no overlap between the sessions, except the ending and
the starting times. That is, t−0 ≤ t+0 ≤ t−1 < t+1 ≤, ...,≤ t−i′ < t+i′ , where i′ is the number of bins
that I has.

Let us now point at costs of algorithm Square on which we “charge” the set of commitments
commit(I, i) in bin (I, i) for the ith session of I. We now consider only a bin (I, i) whose committed
session is not the last. Note that the bin corresponds to a rectangle of |I| by t+i −t−i replicas. Expand
the bin by |I| replicas left, if such exist. This yields the payer of bin (I, i); that is the payer is a

rectangle subgraph of |−→NL(I) ∪ I| by t+i − t−i replicas. We point at specific costs Square had in
this payer.

26

Recall that every non last session of I ends with a base replica in pivot(I), i.e., (pivot(I), t+i) ∈
Base∪tail. The solution of Square contains a route (Square route) that starts at the root and
reaches (pivot(I), t+i) by the definition of a base replica. For the charging, we use some (detailed
below) of the edges in the intersection of that Square route and the payer rectangle.

The easiest case is that the above Square route enters the payer at the payer’s bottom (t−i) and
stays in the payer until t+i . In this case (EB, for Entrance from Below), each time (t−i < t < t+i)
there is a commitment in the bin, there is also an arc at in the Square route (from time t to time
t+ 1). We charge that commitment on that arc at. The remaining case (SE, for Side Entrance) is
that the Square route enters the payer from the left side of the payer. (That is, Square delivers
a copy to pivot(I) from some other node u outside I’s neighborhood, rather than stores copies
at pivot(I)’s neighborhood from some earlier time). Therefore, the route must “cross” the left
neighbor interval of I in that payer. Thus, there exists at least |I| = δℓ(I) horizontal edges in the
intersection between the payer (payer(I, i)), of (I, i) and the Square route.

Unfortunately, the number of commitments in bin (I, i) can be much grater than δℓ(I). However,
consider some replica (v, t∗) ∈ (Base ∪ tail) ∩ I[t∗], where t∗ is the last time there was a base
replica in I at its i’th session. The number of commitments in bin (I, i) corresponding to the
times after t∗ is δℓ(I) at most. (To commit, an interval must have an active node; to be active,
that node needs a base replica in the last δℓ(I) times.) The commitments of times t∗ to t+i are
charged on the horizontal edges in the intersection between payer(I, i) and Square’s route that
reach (pivot(I), t+i). Recall that, on the one hand, there are δℓ(I) commitments at most in bin (I, i)
corresponding to times t∗ ≤ t ≤ t+. On the other hand, there exists at least δℓ(I) horizontal edges
in the intersection between Square route and payer(I).

We charge the commitments of times t−i to t∗ − 1 on the arcs in the intersection between the
payer (payer(I, i)), of (I, i) and the Square’s route that reaches (v, t∗). (The route of Square that
reach (v, t∗) must contain an arc at = ((u, t), (u, t+1)) in payer(I, i) for every time t ∈ [t−i , t

∗ − 1];
this implies that in each time (t−i < t < t∗) there is a commitment in the bin, there is also an arc
at in Square solution (from time t to time t+ 1); we charge that commitment on that arc at.)

For each interval I, it is left to account for commitments in I’s last session. That is, we now
handle the bin (I, i′) where I has i′ commitment-sessions. This session may not end with a base
replica in the pivot of I, so we cannot apply the argument above (that Square must have a route
reaching the pivot of I at t+i′). On the other hand, the first session of I (the uncommitted-session)
does end with a base replica in pivot(I), but has no commitments. Intuitively, we use the payer of
the first session of I to pay for the commitments of the last session of I. Specifically, in the first
session, the Square route must enter the neighborhood of I from the left side; Hence, we apply
the argument of case SE above.

To summarize, (1) each edge that belongs to Square’s solution may be charged at most once
to each payer that it belongs too. (2) each edge belongs to 4 logδ n payers at most (there are logδ n
levels; the payer rectangle of each level is two times wider than the bins; two consecutive sessions
may intersect only at their boundaries)8. This leads to the term 4 logδ n before the |FSQ| in the
statement of the lemma.

We now optimize a tradeoff between the storage coast and the delivery cost of D-Lineon. On
the one hand, Lemma 4.8 shows that a large δ reduces the number of commitments. By Observation
4.3, this means a large δ reduces the storage cost of D-Lineon. On the other hand, corollary 4.6

8 Note that, unlike the analysis of Lineon for undirected line network [15, 14], we don’t claim that each arc is
charged just for constant number of times.

27

shows that a small δ reduces the delivery cost. To optimize the tradeoff (in an order of magnetite),
fix δ = ⌈ logn

log logn⌉. Thus, logδ n = Θ(logn
log logn). Corollary 4.6, Lemma 4.8 and Observation 4.3 imply

that cost(D-Lineon,R) = O(cost(Square,R) logn
log logn). Thus, by Theorem 3.9, we have the proof of

the following theorem.

Theorem 4.9 Algorithm D-Lineon is O(logn
log logn)-competitive for DMCD problem.

5 Optimal algorithm for RSA and for DMCD

Algorithm D-Lineon in Section 4 solves DMCD. To solve also RSA, we transform Algorithm
D-Lineon to an algorithm rsaon that solves RSA. First, let us view the reasons why the solution
for DMCD (Section 4) does not yet solve RSA. In DMCD, the X coordinate of every request
(in the set R) is taken from a known set of size n (the network nodes {1, 2, ..., n}). On the other
hand, in RSA, the X coordinate of a point is arbitrary. (A lesser obstacle is that the Y coordinate
is a real number, rather than an integer.) The main idea is to make successive guesses of the
number of Steinr points and of the largest X coordinate and solve under is proven wrong (e.g. a
point with a larger X coordinate arrives) then readjust the guess for future request. Fortunately,
the transformation is exactly the same as the one used in [14, 15] to transform the algorithm for
undirected MCD to solve SRSA. For completeness, we nevertheless present the transformation
here.

5.1 Proof Outline

The following outline is taken (almost) word for word from [15]. (We made minor changes, e.g.
replacing the word SRSA by the word RSA).

First, let us view the reasons why the solution for DMCD (Section 4) does not yet solve RSA.
In DMCD, the X coordinate of every request (in the set R) is taken from a known set of size n (the
network nodes {1, 2, ..., n}). On the other hand, in RSA, the X coordinate of a point is arbitrary.
(A lesser obstacle is that the Y coordinate is a real number, rather than an integer.) The main
idea is to make successive guesses of the number of Steinr points and of the largest X coordinate
and solve under is proven wrong (e.g. a point with a larger X coordinate arrives) then readjust
the guess for future request. Let us now transform, in three conceptual stages, D-Lineon into an
optimal algorithm for the online problem of RSA:

1. Given an instance of RSA, assume temporarily (and remove the assumption later) that the
number N of points is known, as well as M , the maximum X coordinate any request may
have. Then, simulate a network where n ≥ N and

√
log n = O(

√
logN), and the n nodes are

spaced evenly on the interval between 0 and M . Transform each RSA request to the nearest
grid point. Solve the resulting DMCD problem.

2. Translate these results to results of the original RSA instance.

3. Get rid of the assumptions.

The first stage is, of course, easy. It turns out that “getting rid of the assumptions” is also relatively
easy. To simulate the assumption that M is known, guess that M is some Mj . Whenever a guess
fails, (a request ri = (xi, ti) arrives, where xi > Mj), continue with an increased guess Mj+1. A
similar trick is used for guessing N . In implementing this idea, our algorithm turned out paying a
cost of ΣMj . (This is Mj per failed guess, since each application of Square to a new instance, for a
new guess, starts with delivering a copy to every node in the simulated network; see the description

28

of Algorithm Square.) On the other hand, an (optimal) algorithm that knew M could have paid
M only once. IF Mj+1 is “sufficiently” larger than Mj, then ΣMj = O(M).

The second stage above (translate the results) proved to be somewhat more difficult, even in
the case that N and M are known (and even if they are equal). Intuitively, following the first
stage, each request ri = (xi, ti) is inside a grid square. The solution of DMCD passes via a corner
of the grid square. To augment this into a solution of RSA, we need to connect the corner of the
grid square to ri. This is easy in an offline algorithm. However, an online algorithm is not allowed
to connect a point at the top of the grid square (representing some time t) to a point somewhere
inside the grid square (representing some earlier time t− ǫ).

Somewhat more specifically, following the first stage, each request ri = (xi, ti) is in some
grid square, where the corners of the square are points of the simulated DMCD problem. If we
normalize M to be N , then the left bottom left corner of that square is (⌊xi⌋, ⌊ti⌋)). Had we
wanted an offline algorithm, we could have solved an instance of DMCD, where the points are
(⌊x1⌋, ⌊t1⌋), (⌊x2⌋, ⌊t2⌋), (⌊x3⌋, ⌊t3⌋), Then, translating the results of DMCD would have meant
just augmenting with segments connecting each (⌊xi⌋, ⌊ti⌋) to (xi, ti). Unfortunately, this is not
possible in an online algorithm, since (xi, ti) is not yet known at (⌊ti⌋). Similarly, we cannot use
the upper left corner of the square (for example) that way, since at time ⌈ti⌉, the algorithm may
no longer be allowed to add segments reaching the earlier time ti.

5.2 Informal description of the transformed RSA algorithm assuming n/2 ≤
maxxQ ≤ n and 4

√
n ≤ N ≤ n and n is known

The algorithm under the assumptions above appears in Figure 15. Below, let us explain the
algorithm and its motivation informally.

When describing the solution of DMCD, it was convenient for us to assume that the network
node were {1, ..., n}. In this section (when dealing with RSA), it is more convenient for us to
assume that D-Lineon solves DMCD with the set of network nodes being {0, ..., n − 1}. Clearly,
it is trivial (though cumbersome) to change D-Lineon to satisfy this assumption.

Assume we are given a set of pointsQ = {p1 = (x1, y1, ..., (xN , yN))} for RSA. We now translate
RSA points to DMCD requests (Fig. 14). That is, each point pi = (xi, yi) that is not already
on a grid node, is located inside some square whose corners are the grid vertices. We move point
pi = (xi, yi) to the grid vertex (replica) ri = (vi, ti) on the left top corner of this square. That is, we
move pi (if needed) somewhat later in time, and somewhat left on the X axis. We apply D-Lineon

to solve the resulting DMCD. This serves ri = (vi, ti) from some other replica (u, ti), where ti may
be slightly later than the time yi we must serve pi. After Square solves the DMCD instance, we
modify the DMCD solution to move the whole horizontal route Hon(i) of request ri (route from
qoni = (uoni , ti) to ri = (vi, ti) somewhat earlier in time (from time ti to time yi). This now serves
a point (vi, yi), where vi may be slightly left of xi. Hence, we extend the above horizontal route
by the segment from (vi, yi) to pi = (xi, yi). In addition, the transformed algorithm leaves extra
copies in every network node along the route Hon(i), until time ti (see Fig. 16(d)); a little more
formally, the algorithm adds to the solution of RSA the vertical line segment Lver〈(k, yi), (k, ti)〉
(a vertical segment between the points (k, yi) and (k, ti)), for every k such that (k, ti) ∈ Von(i).

There is a technical point here: D-Lineon had a copy in (u, ti) and we need a “copy” in (u, yi)
where ti − 1 < y ≤ ti. That is, we need that the solution of RSA problem will already includes
(u, yi).

Observation 5.1 The solution of RSA problem already includes (u, yi).

29

p1

r2 = r3 p3

p2
r1

Figure 14: Point p1 is transformed upward and leftward to γ1; p2 is transformed upward and p3 is is
transformed leftward; the points transform to the same vertex point.

Proof: To make sure such a copy in (u, yi) does exist, let us consider the way the copy reached
(u, ti) in D-Lineon. If D-Lineon stored a “copy” in u from time t− 1 to t (see Fig. 16(c)), then
also (u, yi) belong to the solution. Otherwise, D-Lineon moved the copy to (u, ti) over a route PH
from some other grid vertex (w, ti).

Note that (w, ti) appeared in the transformed algorithm because that algorithm served a point
pi = (xi, yi), of a time ti − 1 < yi < ti (see Fig. 16(d)). The transformed algorithm moved this
route PH[(w, t), (u, t)] earlier in time to P̃H[(w, yi), (u, yi)] and left copies in those network node
until time ti (see Fig. 16(d)). In particular, it leave a copy also in u from time yi to time ti, hence
(u, yi) is already in the solution of the transform algorithm.

So far, we described how to transform the delivery phase of D-Lineon. The storage phase of
D-Lineon does not need to be transformed. (Actually, DMCD even has some minor extra difficulty
that does not exist in RSA; consider some request ri−1 = (vi−1, ti−1) in DMCD, and suppose that
the next request ri = (vi, ti) is at time ti = ti−1 + 10; then time t+ 1 arrives, and D-Lineon must
make some decisions, without knowing that the next request will be at time ti−1+10; then time t+2
arrives, etc; no such notion of time passing (without new points arriving) exists in the definition
of RSA; that is, the Y coordinate yi of the next request pi = (xi, yi) is known right after the
algorithm finished handling pi = (xi, yi); the storage phase of the transformed algorithm does not
make any use of this extra freedom in RSA and simulates the “times”, or the Y coordinates, one
by one; note that for that purpose, the transformation of the delivery phase ensured the following
property: that if a copy in DMCD exists in a replica (v, t) in D-Lineon, this replica also contains
a copy in the transformed algorithm.) Denote the solution of rsaonn on Q by Frsan (Q). For the
pseudo code, see Fig. 15.

Analysis sketch of the transformed algorithm with known parameters It is not hard to
see that an optimal solution for that instance of DMCD is “not that far” from an optimal solution
of the original instance of RSA. To see that, given an optimal solution of RSA, one can derive a
feasible solution of the resulting DMCD by adding 2 segments of length at most 1 for each point
p. (One vertical such segment plus a horizontal one are enough to connect a point p to the replica
(v, t) where we moved p). The total of those distances is 2n at most. On the other hand, an
optimal solution of RSA would need to pay at least maxxQ ≥ n/2. Hence, an optimal solution for
DMCD would have implied a constant approximation of RSA. Intuitively, an approximation (and
a competitive ratio) for DMCD implies an approximation (and a competitive ratio) of RSA in a
similar way. For a given Algorithm A for RSA and a set Q of input points, let cost(A,Q) be the
cost of A on Q. Let opt be an optimal algorithm for RSA.

30

1. For p1 do:

(a) compute the translated request r1 = (v1, t1) of p1; R← {r1}.
(b) Frsan ← {Lver〈(0, 0), (0, y1)〉, Lhor〈(0, y1), (x1, y1)〉};

2. For each point pi ∈ Q \ {p1} = {p2 = (x2, y2), ..., pN = (yN , yN)} do:

(a) compute the translate request ri = (vi, ti) of pi;

(b) R ← R∪ {ri}.
(c) “Vertical phase”

i. If ti > ti−1, then for each time t = ti−1, ..., ti − 1 do:

A. “Simulate” D-Lineon on R to find Ct+1.

B. Frsan ← Frsan ∪ {Lver〈(v, t), (v, t + 1)〉 | (v, t+ 1) ∈ Ct+1}.
(d) “Horizontal phase”

i. “Simulate” D-Lineon on R to find Von(i).

ii. Frsan ← Frsan ∪ {Lhor〈(uoni , yi), (vi, yi)〉}.
iii. Frsan ← Frsan ∪ {Lhor〈(vi, yi), (xi, yi)〉}
iv. Frsan ← Frsan ∪ {Lver〈(u, yi), (u, ti)〉 | (u, ti) ∈ PonV (i)}.

3. Return Frsan (Q)

Figure 15: Subroutine rsaonn assumes the knowledge of n and that n/2 ≤ maxxQ ≤ n and
4
√
n ≤ N ≤ n.

Lemma 5.2 Assume that maxxQ ≤ n and N ≤ n. Then, cost(rsaonn ,Q) = O(logn
log logn(cost(opt,Q)+

n)). If also 4
√
n ≤ N and n/2 ≤ maxxQ, then rsaonn is O(logN

log logN)-competitive for RSA.

Proof: It is easy to verify that rsaonn computes a feasible solution (see the “technical point”
comments in parentheses in section 5.2). Consider some input point set Q = {p1 = (x1, y1), ..., pN =
(xN , yN)} such that maxxQ ≤ n and N ≤ n. Let R = {r1 = (v1, t1), ..., rN = (vN , tN)} be the
translated instance of the MCD problem.

Recall how does rsaonn (Q) translate the solution of
D-Lineon(R). An horizontal edge ((u, ti), (u+1, ti)) ∈ PonH (i) (that D-Lineon add to its solution
when handling request ri, see step (D2) in D-Lineon) is translated into a horizontal line segment
Lhor〈(u, yi), (u+1, yi)〉. An arc ((u, t), (u, t+1)) ∈ Aon (of D-Lineon’s solution on R) is translated
into a vertical line segment Lver〈(u, t), (u, t+1)〉. Hence, the total cost of those parts of the solution
of rsaonn (Q) is exactly the same as the cost of the solution of D-Lineon(R).

Thus, the cost of rsaonn on Q differ from the cost of D-Lineon onR only by two kinds of “short”
segments (Segment of length at most 1). For the first kind, recall (technical point in Section 5.2)
that for every moved horizontal path P̃H[(w, ỹ), (u, ỹ)], rsaonn added a short vertical segment for
every network node w′ of that path from (w′, ỹ) to (w′, ⌈y⌉). The second kind of addition is an
horizontal short segment connecting the input point p = (x, y) to (u, y), where u = ⌊x⌋.

31

The total cost of the second kind is bounded by n, since |vi − xi| ≤ 1. We claim that the total
cost of the short segment of the first kind is cost(D-Lineon,R) at most. To see that, notice that
we have at most 1 such “short” segment (shorter than 1) per replica that appears in the solution of
D-Lineon on R. That solution of D-Lineon contains at least as many edges as it contains replicas.
Formally, the cost of rsaonn is at most,

cost(rsaonn ,Q) =

cost(D-Lineon,R) +
n
∑

i=1

(

|PonV (i)| · (ti − yi) + |vi − xi|
)

≤ 2cost(D-Lineon,R) + n.

Thus, by Theorem 4.9,

cost(rsaonn ,Q) ≤ c1
log n

log log n
· cost(opt,R) + n, (25)

where c1 is some constant.
Let us look the other direction, from an optimal solution of RSA for Q to optimal solution of

DMCD for R. Recall that ri can be served from pi at a cost of 2 (at most). Hence,

cost(opt,R) ≤ cost(opt,Q) + 2n. (26)

Thus, by Inequalities (25) and (26),

cost(rsaonn ,Q) (27)

≤ c1
log n

log log n
· (cost(opt,Q) + 2n) + n

= O(
log n

log log n
· (cost(opt,Q) + n).

The first statement of the lemma holds. Now, let us prove the second statement of the lemma.
Assume that maxxQ/2 ≤ N ≤ n and 4

√
n ≤ N ≤ n. Thus also,

cost(opt,Q) ≥ n/2. (28)

Therefore, by Inequalities (27) and (28),

cost(rsaonn ,Q)
cost(opt,Q)

≤
c1

logn
log logn · cost(opt,Q)

cost(opt,Q) +
c1

logn
log logn · 2n+ n

n/2

≤ (5c1 + 1)
log n

log log n
.

The lemma follows, since 4
√
log n ≤ N .

Below, rsaonn is used as a module in another algorithm, responsible for implementing the
assumptions. In each execution of the other algorithm, rsaonn is invoked multiple times, for multiple
subsets of the input. Unfortunately, not every time, the other algorithm uses rsaonn , all the
assumptions are ensured. This is the reason of the “extra” factor n

√
log n in the first part of the

above lemma above. Fortunately, these extra factors of all the invocations are bounded separately
later.

32

pi+1

ri v

pi

ri+1u

pi−1

ti−1

ri−1

ti − 1

ti

(a)

ri−1

pi+1

ri v

pi

ri+1u

pi−1

ti−1

ti − 1

ti

(b)

u

pi

v
ti

ti − 1

pi+1

(c)

yi

Pon
H (i) ri+1

ri

u

pi

v
ti

ti − 1

pi+1

Pon
H (i + 1)wri

yi+1

(d)

Figure 16: Example of execution of rsaonn . (a) rsaonn ’s solution after handling point pi−1; (b) rsa
on
n

simulates the storage phase of D-Lineon on R for times t = ti−1, ..., ti − 1; (c) rsaonn handles point
pi, moves PonH (i) from “time” ti to “time” yi (it serves this path from (u, yi), who “receives a copy”
when D-Lineon handles time ti − 1 in the storage phase), and “leaves copies” at the nodes PonV (i)
from “time” yi to “time” ti; (d) rsa

on
n handles point pi+1, moves PonH (i+1) from “time” ti to “time”

yi+1 (it serves this path from (w, yi+1), who “receives a copy” when handling point pi), and “leaves
copies” at the nodes of PonV (i+ 1) from “time” yi+1 to “time” ti.

33

5.3 Getting rid of the assumption that M=N

We now describe an online algorithm rsaonM,n,p that is somewhat more general than rsaonn . Al-
gorithm rsaonM,n,p is not based on the assumption that the upper bound M on maxxQ is also the
number of points. That is, we now do not assume that M = N . Getting rid of this assumption
is straightforward. The new online algorithm rsaonM,n,p transforms the X coordinate of each input
point to the interval [0, n]. Algorithm rsaonM,n,p passes the transformed point to the online algorithm
rsaonn of Section 5.2 that is assumed to be executing in parallel. The transformation of a point is,
though, a little more involved, as detailed below.

Later on (in Section 5.4), rsaonM,n,p will be used by an even more general algorithm in a similar
way. For that, it is more convenient for us to define algorithm rsaonM,n,p a somewhat more general
algorithm then is needed by the description so far. We now assume that the origin is not necessarily
(0, 0), but is rather some p0 = (0, y0). (Meanwhile, we still assume that x0 = 0). Hence, algorithm
rsaonM,n,p translates the X coordinate of each input point p = (x, y) to f(x) = x · NM . To keep the

proportion between the axes, the y coordinate y is translated to f(y) = (y − y0) · NM . (Recall that
y ≥ t0.) Finally, the solution of rsaonn is translated back to the coordinates of rsaonM,n,p applying

the transformation f− to every point of the solution. (Clearly, this is a polynomial task, since the
solution is described using a polynomial number of points). The pseudo code appears in Fig. 17.
By Lemma 5.2 and the description of rsaonM,n,p, it is easy to see the following.

Observation 5.3 Assume that maxxQ ≤M and N ≤ n. Then, cost(rsaonM,n,p,Q) = O(logn
log logn(cost(opt,Q)+

M)). If also 4
√
n ≤ N and M/2 ≤ maxxQ, then rsaonM,n,p is

O(logN
log logN)-competitive for RSA.

• origin is p0 = (x0, y0).

1. Q′ ← ∅.

2. For each point pi ∈ Q do:

(a) p′i = (x′i, y
′
i)← f(pi,M, n, y0);

(b) Q′ ← Q′ ∪ {p′i}.
(c) Call rsaonn as a subroutine on Q′ to find Frsan (Q′);

(d) FrsaM,n,p ← f−1(Frsan (Q′),M, n, y0);

Figure 17: Algorithm rsaonM,n,p.

5.4 Getting rid of the knowledge assumptions

To give up the assumption that maxxQ is known, we use a standard trick. We first guess that
maxxQ is “about” twice the X coordinate of the first point. Whenever the guess for maxxQ is
proven wrong (some pi = (xi, yi) arrives with xi larger then our guess for maxxQ), we double
the guess. We do not change the solution for the points we already served. Simply, the points
that arrive from now on, are treated as a new instance of RSA, to be solved (by rsaonM,n,p) by a
translation to a new instance of DMCD. Intuitively, every instance of DMCD may need to pay an

34

additional cost that is proportional to our current guess of maxxQ. This is justified by the fact that
(1) the new guess is at least double our previous guess of maxxQ; and (2) any optimal algorithm
would need now to pay maxxQ guessed before. (A minor technical point is that the origin of the
new instance of RSA may not be p0 = (0, 0); instead, the new origin is (0, yi−1), where yi−1 is the
y-coordinates of the last point served.)

For justifying the other assumption, that the number of points is known in advance, we use a
similar trick; however, its justification is more complex. That is, if the number of points grows larger
beyond our current guess, n-guess, we increase our guess of the number of points. We then start a
new instance of rsaonM,n,p with the new guess. (In turn, this leads to a new activation of D-Lineon

with n-guessnew as the new network size.) Hence, we start a newDMCD instance with an increased
“network size”. The “new” guess n-guessnew of the number of RSA points is (not doubled but) the
power of 4 of our “current” n-guess (yielding a double exponential sequence). Each new DMCD
instance is associated with a cost of O(

√
log n-guessnewmaxxQ) at most. Thanks to using a double

exponential groth rather than an exponential growth, this would increase the competitive ratio just
by a factor of O(log logN). Clearly, one should not increase the guess (of the number of points)
more than polynomially each time (since otherwise, for the last guess ˜n-guess, the value would
have been too high compared to the desired logN

log logN competitive ratio.) Summarizing the above
informal description, given an instance of RSA, we use “guesses” of maxxQ and N to partition the
points Q into subsets. Each such subset defines a problem we translate separately to DMCD via
rsaonM,n,p.

Given an instance of RSA, we now define its partition of multiple instances. For that, we define
the partition of Q into subsets Q〈1〉, Q〈2〉, The first |Q〈1〉| points will belong to Q〈1〉, the next
|Q〈2〉| will belong to Q〈2〉, etc. We shall also show how to detect online the first point in Q〈2〉, the
first in Q〈3〉, etc. Before that, we must tackle some technicality. The original RSA problem with
defined for an origin of X = 0 and Y = 0. However, after solving for the RSA instance Q〈1〉, the
next point is at Y coordinate that is larger than zero. Moreover, when solving DMCD, we allowed
the origin to be at any node (that is, in any X coordinate). Hence, it is convenient to generalize
the definition of the RSA to the setting were the input includes an origin point p0 = (x0, y0), in
the positive quadrant. The input point set Q〈k〉 includes only points (in the positive quadrant),
whose y-coordinates are grater than or equal to y0.

Consider a point set Q = {p1, ..., pN}. Algorithm rsaon partitions Q into subsets as follows.
For every i = 1, ..., N define that

M -guess(i) = 2l
′

, (29)

where l′ = ⌈log max{xj | j = 1, ..., i}⌉, and

n-guess(i) = 22
2l∗

, (30)

where l∗ is integer such that l∗ = minl(2
22l ≥ i). Note that, 22

2l+1
= 2(4·2

l) = (22
2l
)4. Hence, the

growth of the sequence 22
2·0
, 22

2·1
, 22

2·2
, ... is for the power of 4.

Let us use the above guesses to generate the subset. Specifically, we generate a sequence
g1 < g2 < ... < gτ (for some gτ) of separators between consecutive subsets. That is, Q〈1〉 =
{pg1 , ..., pg2−1}, then Q〈2〉 = {pg2 , ..., pg3−1}, etc. A separator is the index of a point where one
of the guess fails. Specifically, let g1 = 1 and if M -guess(gk) < M -guess(N) or n-guess(gk) <
n-guess(N), then let

gk+1 , mini
(

M -guess(gk) < M -guess(i) or n-guess(gk) < n-guess(i)
)

. (31)

35

Define that the guess n-guess of Q〈k〉 is nk = 22
2(n-guess(gk))

and the guess M -guess of Q〈k〉 is
Mk = 2M-guess(gk), for every k = 1, ..., τ . The origin points of these subsets are defined as follows:
Let yklast = be the y-axis of the last point pgk+1−1 in Q〈k〉 and let y10 = 0 and yk0 = yk−1

last (for
k = 2, ..., τ). The origin point of Q〈k〉 is pk0 = (0, yk0), for every k = 1, ..., τ (see Fig. 18).

All the above functions can be computed online. As sketched, Algorithm rsaon handles a
point after point, and a subset after subset. For every point pi ∈ Q, rsaon finds the subset
Q〈k〉 that pi belongs to (i.e., pi ∈ Q〈k〉), then rsaon passes the point to an instance of rsaonM,n,p

executing (in parallel to rsaon) on Q〈k〉, with the origin point pk0 = (0, yk0), and with the M -guess
parameter M = Mk and the n-guess parameter n = nk. Denote the solution of rsaonM,n,p on Q〈k〉
by FrsaM,n,p(Q〈k〉). The solution of rsaon is the union of the solutions of rsaonM,n,p on all the subsets.

That is, rsaon’s solution is Frsa(Q) ≡ ∪τk=1FStM,n(Q〈k〉). The pseudo code of rsaon is given in
Fig. 19.

pi

ri

Q〈3〉

Q〈5〉

Q〈2〉

Q〈1〉

y4
0

Q〈4〉 M5/n5

M5M3 = M4M1 M2

Figure 18: Partitioning Q into subsets Q〈1〉,Q〈2〉, ...,Q〈5〉; each instance corresponds to a subset
Q〈k〉, origin (0, yk0), M -guess Mk and n-guess nk.

Theorem 5.4 Algorithm rsaon is optimal and is O(logN
log logN)-competitive.

5.5 Optimizing DMCD for a small number of requests

Algorithm D-Lineon was optimal only as the function of the network size. Recall that our solution
for RSA was optimal as a function of the number of requests. We obtain this property for the
solution of DMCD too, by transforming our RSA algorithm back to solve DMCD, and obtain the
promised competitiveness, O(min{ logN

log logN , logn
log logn}).

Algorithm D-Lineon was optimal as the function of the network size (Theorem 4.9). This
means that it may not be optimal in the case that the number of requests is much smaller than
the network size. In this section, we use Theorem 5.4 and algorithm rsaon to derive an improve
algorithm for MCD. This algorithm, D-Lineon+ , is competitive optimal (for DMCD) for any
number of requests. Intuitively, we benefit from the fact that rsaon is optimal for any number of

36

1. when the first point p1 arrives

(a) k ← 1; Q〈1〉 ← {p1}; M1 ← 2M-guess(1); n1 ← 4; g1 ≡ 1; and origin p10 = (0, 0).

(b) start an instance of rsaonM,n,p on Q〈1〉;

2. when an input point arrives pi = (xi, yi) (for i > 1), /* the points are i = 2, ..., N ∗ /

(a) if xi ≤Mk and i ≤ nk, then Q〈k〉 ← Q〈k〉 ∪ {pi}.
(b) Otherwise, (pi “open a new instance”), then

i. k ← k + 1;

ii. Q〈k〉 ← {i};
iii. Mk ← 2M-guess(i);

iv. nk ← 22
2(n-guess(i))

;

v. pk0 ≡ (0, yi−1);

vi. gk ← i;

vii. start an instance of rsaonM,n,p on Q〈k〉;

3. pass pi to the instance of rsaonM,n,p executing on Q〈k〉 with origin pk0 ; M = Mk; and

n = nk and compute FrsaM,n,p({pgk , ..., pi+1}).

4. Frsa ← Frsa ∪ FrsaM,n,p({pgk , ..., pi+1}).

Figure 19: Algorithm rsaon.

points (no notion of network size exists in RSA).
This requires the solution of some delicate point. Given an instance DMCDa of DMCD, we

would have liked to just translate the set Ra of DMCD requests into a set Q of RSA points and
apply rsaon on them. This may be a bit confusing, since rsaon performs by converting back to
DMCD. Specifically, recall that rsaon breaks Q into several subsets, and translates back first the
first subset Q1 into an the requests set Rb

1 of a new instance DMCDb
1 of DMCD. Then, rsaon

invokes D-Lineon on this new instance DMCDb
1. The delicate point is that DMCDb

1 is different
than DMCDa.

In particular, the fact that Q1 contains only some of the points of Ra, may cause rsaon to
“stretch” their X coordinates to fit them into the network of DMCDa. Going carefully over the
manipulations performed by rsaon reveals that the solution of rsaon may not be a feasible solution
of DMCD (even though it applied D-Lineon plus some manipulations). Intuitively, the solution
of rsaon may “store copies” in places that are not grid vertices in the grid of DMCDa. Thus the
translation to a solution of DMCD1 is not immediate.

Intuitively, to solve this problem, we translate a solution of rsaon to a solution of DMCDa in
a way that is similar to the way we translated a solution of D-Lineon to a solution of RSA. That
is, each request of DMCDa we move to a “nearby” point of rsaon. This is rather straightforward,
given the description of our previous transformation (of Section 5.2). The details are left for the
full paper.

37

Theorem 5.5 Algorithm D-Lineon+ is optimal and it

O(min{ logN
log logN , logn

log logn})-competitive.

6 Lower Bound for RSA

In this section, we prove the following theorem, establishing a tight lower bound for RSA and for
DMCD on directed line networks. Interestingly, this lower bound is not far from the one proven
by Alon and Azar for undirected Euclidian Steiner trees [1]. Unfortunately, the lower bound of [1]
does not apply to our case since their construct uses edges directed in what would be the wrong
direction in our case (from a high Y value to a low one).

Theorem 6.1 The competitive ratio of any deterministic online algorithm for DMCD in directed
line networks is Ω(logn

log logn), implying also an Ω(logN
log logN) lower bound for RSA.

Proof: We first outline the proof. Informally, given a deterministic online algorithm onalgmcd, we
construct an adversarial input sequence. Initially, the request set includes the set diag = {(k, k) |
0 ≤ k ≤ n}. That is, at each time step t, the request (t, t) is made. In addition, if the algorithm
leaves “many copies” then the lower bound is easy. Otherwise, the algorithm leaves “too few copies”
from some time t − 1 until time t. For each such time, the adversary makes another request at
(t− k, t) for some k defined later. The idea is that the adversary can serve this additional request
from the diagonal copy at (t− k, t− k) paying the cost of k. On the other hand, the algorithm is
not allowed at time t to decide to serve from (t− k, t− k). It must serve from a copy it did leave.
Since the algorithm left only “few” copies to serve time t the replica, (t, t − k) can be chosen at
least at distance k(log n) from any copy the algorithm did leave. Hence, the algorithm’s cost for
such a time t is Ω(log n) times greater than that of the adversary.

More formally, let δ = ⌈log n⌉. Partition the line at time t ∈ {n/2, . . . , n} into ⌊logδ n − 1⌋
intervals: Ii(t) = (t − δi+1, t − δi], where i ∈ {1, 2, . . . , ⌊logδ n− 1⌋}. (Note that the intervals are
well defined, since ⌊logδ n− 1⌋ ≤ ⌊logδ t⌋, for every n/2 ≤ t ≤ n, which implies that δi ≤ t for every
i = 1, ..., ⌊logδ n − 1⌋.) Given an online algorithm onalgmcd, the adversary constructs the set of
requests R as follows. Initially, R ← diag. For each time t ≥ n/2, denote by Valg(t) the set of
nodes that hold the movie for time t (just before onalgmcd receives the requests for time t). The
adversary may add a request at t according to Valg(t). In particular, if onalgmcd leaves a copy
in at least one of the nodes of every such intervals Ii(t), for i = 1, ..., ⌊logδ n − 1⌋, then the only
adversary request for time t is (t, t) (while onalgmcd left copies in at least ⌊logδ n − 1⌋ nodes).
Otherwise, the adversary adds the request (t− δi

∗
, t) to R, where i∗ is an arbitrary index such that

Ii∗(t) ∩ Valg(t) = ∅. That is, the adversary request set of time t is {(t, t)} in the first case and
{(t− δi

∗
, t), (t, t)} in the second case.

For each time t = ⌊n/2⌋, ..., n, one of the following two cases hold: (1) onalgmcd pays at
least ⌊logδ n − 1⌋ = Ω(logn

log logn) for storing at least ⌊logδ n − 1⌋ copies from time t − 1 to time t,
while the adversary pays just 2 = O(1) (to serves request (t, t)); or (2) onalgmcd pays, at least,
δi

∗+1− δi
∗
= Ω(δi

∗+1) for delivering a copy to (t− δi
∗

t , t) from some node outside the interval Ii∗(t),
while the adversary pays O(δi

∗
) for storing the movie in node t − δi

∗
from time t − δi

∗
to time t

(that is, serving from replica (t − δ∗, t − δ∗) on the diagonal) and additional two edges (to serve
request (t, t)). Thus, in that case, onalgmcd pays at least O(log n) times more than the adversary.
This establishes Theorem 6.1.

References

[1] N. Alon and Y. Azar. On-line Steine trees in the euclidean plane. Discrete & Computational Geometry,
10:113–121, 1993.

[2] R. Bar-Yehuda, E. Kantor, S. Kutten, and D. Rawitz. Growing half-balls: Minimizing storage and
communication costs in CDNs. In ICALP, pages 416–427, 2012.

[3] W. Bein, M. Golin, L. Larmore, and Y. Zhang. The Knuth-Yao quadrangle-inequality speedup is a
consequence of total monotonicity. ACM Transactions on Algorithms, 6(1), 2009.

[4] P. Berman and C. Coulston. On-line algorrithms for Steiner tree problems. In STOC, pages 344–353,
1997.

[5] M. Charikar, D. Halperin, and R. Motwani. The dynamic servers problem. In 9th Annual Symposium
on Discrete Algorithms (SODA), pages 410–419, 1998.

[6] X. Cheng, B. Dasgupta, and B. Lu. Polynomial time approximation scheme for symmetric rectilinear
Steiner arborescence problem. J. Global Optim., 21(4):385–396, 2001.

[7] J. D. Cho. A min-cost flow based min-cost rectilinear Steiner distance-preserving tree construction. In
ISPD, pages 82–87, 1997.

[8] J. Cong, A. B. Kahng, and K. S. Leung. Efficient algorithms for the minimum shortest path Steiner
arborescence problem with applications to vlsi physical design. IEEE Trans. on CAD of Integrated
Circuits and Systems, 17(1):24–39, 1998.

[9] R. R. Ladeira de Matos. A rectilinear arborescence problem. Dissertation, University of Alabama, 1979.

[10] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl.
Math., 32(4):826–834, 1977.

[11] D. Halperin, J. C. Latombe, and R. Motwani. Dynamic maintenance of kinematic structures. In J.P.
Laumond and M. Overmars, editors, Algorithmic Foundations of Robotics. A.K. Peters Publishing,
pages 155–170, 1997.

[12] F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55–897, 1992.

[13] A. Kahng and G. Robins. On optimal interconnects for vlsi. Kluwer Academic Publishers, 1995.

[14] E. Kantor and S. Kutten. Optimal competitiveness for symmetric rectilinear Steiner arborescence and
related problems. CoRR, abs/1307.3080, 2013.

[15] E. Kantor and S. Kutten. Optimal competitiveness for symmetric rectilinear Steiner arborescence and
related problems. In ICALP(2), pages 520–531, 2014.

[16] B. Lu and L. Ruan. Polynomial time approximation scheme for rectilinear Steiner arborescence problem.
Combinatorial Optimization, 4(3):357–363, 2000.

[17] L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost minimum trees in directed acyclic graphs. Z.
Oper. Res., 18:59–67, 1974.

[18] C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Information caching for delivery of person-
alized video programs for home entertainment channels. In IEEE International Conf. on Multimedia
Computing and Systems, pages 214–223, 1994.

[19] C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Optimal information delivery. In 6th ISAAC,
pages 181–187, 1995.

[20] C.H. Papadimitriou, S. Ramanathan, P.V. Rangan, and S. Sampathkumar. Multimedia information
caching for personalized video-on demand. Computer Communications, 18(3):204–216, 1995.

[21] S. Rao, P. Sadayappan, F. Hwang, and P. Shor. The Rectilinear Steiner Arborescence problem. Algo-
rithmica, pages 277–288, 1992.

[22] W. Shi and C. Su. The rectilinear Steiner arborescence problem is NP-complete. In SODA, pages
780–787, 2000.

[23] V.A. Trubin. Subclass of the Steiner problems on a plane with rectilinear metric. Cybernetics and
Systems Analysis, 21(3):320–324, 1985.

	1 Introduction
	2 Preliminaries
	3 Algorithm Square, a pseudo online algorithm
	3.1 Analysis of Square
	3.1.1 Covered and uncovered requests
	3.1.2 Overview of the analysis of the cost of uncovered requests

	3.2 Formal analysis of the cost of uncovered requests
	3.2.1 Parent ball in tree larger then its child
	3.2.2 Uncovered request has at least two children

	4 Algorithm D-Lineon - the ``real'' online algorithm
	5 Optimal algorithm for RSA and for DMCD
	5.1 Proof Outline
	5.2 Informal description of the transformed RSA algorithm assuming n/2maxxQn and [4]nNn and n is known
	5.3 Getting rid of the assumption that M=N
	5.4 Getting rid of the knowledge assumptions
	5.5 Optimizing DMCD for a small number of requests

	6 Lower Bound for RSA

