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Abstract
We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis

#ETH introduced by Dell et al. (ACM Transactions on Algorithms, 2014). Our framework allows us to
convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus
ruling out algorithms with running time 2o(n) on graphs with n vertices and O(n) edges. As exemplary
applications of this framework, we obtain tight lower bounds under #ETH for the evaluation of the
zero-one permanent, the matching polynomial, and the Tutte polynomial on all non-easy points except
for one line. This remaining line was settled very recently by Brand et al. (IPEC 2016).

1 Introduction
Counting complexity is a classical subfield of complexity theory, launched by Valiant’s seminal paper [30] that
introduced the class #P and proved #P-hardness of the zero-one permanent, a problem equivalent to counting
perfect matchings in a bipartite graph. This initial breakthrough spawned an ongoing research program that
systematically studies the complexity of computational counting problems, and many results in this area
can be organized as dichotomy results. Such results show that, among problems that can be expressed in
certain rich frameworks, each problem is either polynomial-time solvable or #P-hard. Moreover, these results
often give criteria for deciding which side of the dichotomy a given problem occupies. For instance, a full
dichotomy was shown for the problems of counting solutions to constraint-satisfaction problems [5, 6], and
similar results are known for large subclasses of so-called Holant problems [9, 7], and for the evaluation of
graph polynomials such as the Tutte polynomial [22] and the cover polynomial [2, 1].

Over the course of the counting complexity program, it became clear that most interesting counting
problems are #P-hard, and that the class of polynomial-time solvable problems is rather limited, nevertheless
containing some surprising examples, such as counting perfect matchings in planar graphs, counting spanning
trees, and problems amenable to holographic algorithms [32]. To attack the large body of hard problems,
several relaxations were studied, such as approximate counting [23, 16, 15], counting modulo fixed numbers
[17, 31], and counting on restricted graph classes, such as planar and/or 3-regular graphs [29, 8].

In this paper, we follow an avenue of relaxations recently introduced by Dell et al. [14] and consider
the possibility of sub-exponential exact algorithms for counting problems. More precisely, we rule out such
algorithms for various counting problems under popular complexity-theoretic assumptions. For instance, we
can clearly count perfect matchings on m-edge graphs in time 2O(m) by brute-force, but is there a chance of
obtaining a running time of 2o(m)? An unconditional negative answer would imply the separation of FP and
#P, so our results need to rely upon additional hardness assumptions: We build upon the exponential-time
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hypothesis #ETH, introduced in [14], which we may consider for now as the hypothesis that the satisfying
assignments to 3-CNF formulas ϕ on n variables cannot be counted in time 2o(n). This hypothesis is trivially
implied by the better-known and widely-believed decision version ETH, introduced in [21, 20], which assumes
the same lower bound for deciding the satisfiability of ϕ.

Dell et al. [14] were able to prove almost-tight lower bounds under #ETH for a variety of counting problems:
For instance, they could rule out algorithms with running time 2o(n/ logn) for the zero-one permanent on
graphs with n vertices and O(n) edges. Similar lower bounds were shown for counting vertex covers, and for
most points of the Tutte polynomial.

1.1 Hardness via polynomial interpolation
The lower bounds in [14] are obtained via polynomial interpolation, one of the most prominent techniques
for non-parsimonious reductions between counting problems [26, 22, 29, 8, 19, 18, 14]. To illustrate this
technique, and for the purposes of further exposition, let us reduce counting perfect matchings to counting
matchings (that are not necessarily perfect), using a standard argument similar to [29]. In the following, let
G be a graph with n vertices. We wish to obtain the number of perfect matchings in G by querying an oracle
for counting matchings in arbitrary graphs.

Step 1 – Set up interpolation: For k ∈ N, let mk denote the number of matchings with exactly k
unmatched vertices in G. In particular, m0 is equal to the number of perfect matchings in G. For an
indeterminate x, define a polynomial µ via

µ(x) =
n∑
k=0

mk · xk (1)

and observe that its degree is n. Hence, we could use Lagrange interpolation to recover all its coefficients
if we were given the evaluations of µ at n+ 1 distinct input points. In particular, this would give us the
constant coefficient m0, which counts the number of perfect matchings in G.

Step 2 – Evaluate the polynomial with gadgets: We can evaluate µ(t) at points t ∈ N \ {0} by a
reduction to counting matchings: For t ∈ N with t ≥ 1, define a graph Gt from G by adding, for each
vertex v ∈ V (G), a gadget that consists of an independent set of t− 1 fresh vertices together with edges
from all of these vertices to v. Then it can be checked that µ(t) is equal to the number of matchings in
Gt: Each matching in G with exactly k unmatched vertices can be extended to tk matchings in Gt by
including up to one gadget edge at each unmatched vertex.

In summary, by evaluating the polynomial µ(t) for all t ∈ {1, . . . , n+ 1} via gadgets and an oracle for
counting matchings in Gt, we can use Lagrange interpolation to obtain m0. This gives a polynomial-time
Turing reduction from counting perfect matchings to counting matchings, transferring the #P-hardness of
the former problem to the latter.

Furthermore, the above argument can also be used to derive a lower bound for counting matchings, which
is however far from being tight: If the running time for counting perfect matchings on n-vertex graphs has
a lower bound of 2Ω(n), then only a 2Ω(

√
n) lower bound for counting matchings follows from the above

argument, since the reduction incurs a quadratic blowup. This is because Gn+1 has a gadget of size O(n) at
each vertex, and thus O(n2) vertices in total.

Following the same outline as above, but using more sophisticated gadgets with O(logc n) vertices, similar
reductions for various problems were obtained in [18, 19, 14], implying 2Ω(n/ logc n) lower bounds for these
problems, which are however still not tight. In particular, these reductions share the somewhat unsatisfying
commonality that they “leak” hardness: Tight lower bounds for the source problems of computing specific
hard coefficients in a polynomial became less tight over the course of the reduction.
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1.2 The limits of interpolation
Let us say that a reduction is gadget-interpolation-based if it proceeds along the two steps sketched above: First
encode a hard problem into the coefficients of a polynomial p, then find gadgets that can be “locally” placed
at vertices or edges so as to evaluate p(ξ) at sufficiently many points ξ. Finally use Lagrange interpolation to
recover p from these evaluations. As remarked before, this is a well-trodden route for #P-hardness proofs.
However, when taking this route to prove lower bounds under #ETH, we run into the following obstacles:

1. Gadget-interpolation-based reductions typically yield polynomials p of degree n = |V (G)|, hence require
n+ 1 evaluations of p at distinct points, and thus in turn require n+ 1 distinct gadgets to be placed at
vertices of G. But since there are only finitely many simple graphs on O(1) vertices, the size of such
gadgets must necessarily grow as some unbounded function α(n). Thus, any gadget-interpolation-based
reduction can only yield 2Ω(n/α(n)) time lower bounds for some unbounded function α ∈ ω(1), but such
bounds are typically not tight.

2. Additionally, such reductions issue only polynomially many queries to the target problem. This is
required for the setting of #P-hardness, but it is nonessential in exponential-time complexity: To obtain
a lower bound of 2Ω(n), we might as well use a reduction that requires 2o(n) time and issues 2o(n) queries
to the target problem, provided that the graphs used in the oracle queries have only O(n) vertices.
However, it is a priori not clear how to exploit this additional freedom.

These two issues are immanent to every known lower bound under #ETH and have ruled out tight lower
bounds of the form 2Ω(n) so far.

1.3 The block-interpolation framework
In this paper, we circumvent the barriers mentioned above by introducing a framework that allows to apply
the full power of sub-exponential reductions to counting problems. To this end, we use a simple trick based
on multivariate polynomial interpolation, which we dub block-interpolation: In this setting, we do not use a
univariate polynomial p of degree n in the reduction, but rather a multivariate polynomial p that we can
easily obtain from p. This polynomial p also has total degree n, but it has only maximum degree 1/ε in each
individual indeterminate, for any ε > 0 we choose. By making sure that ε is small enough, we can interpolate
the polynomial p from 2o(n) evaluations.

While this increases the number of evaluations significantly, we obtain the following crucial benefit: Each
evaluation p(ξ) required for the interpolation can be performed at a point ξ whose individual entries are
contained in a fixed set of size 1/ε + 1. This will enable us to compute p(ξ) by attaching only 1/ε + 1 distinct
gadgets to G. The catch here is that different vertices may obtain different gadgets, which was not feasible in
the univariate setting.

This way, we overcome the two above-mentioned limitations of gadget-interpolation-based reductions
while simultaneously staying as close as possible to the outline of such reductions. Consequently, we can
phrase our technique as a general framework that can be used to convert a large body of existing #P-hardness
proofs into tight lower bounds under #ETH. Curiously enough, the growth of the gadgets used in the original
proofs is irrelevant to our framework, as only a constant number of gadgets will be used throughout the
reduction. This allows us to use luxuriously large gadgets and it shortcuts the need for the involved and
resourceful gadget constructions used, e.g., for simulating weights in the Tutte polynomial [14, 19] or in the
independent set polynomial [18]. More importantly, our bounds are tight.

1.4 Applications of the framework
To showcase our framework, we show that #ETH rules out algorithms with running time 2o(n) for several
classical problems on unweighted simple graphs G with n vertices and O(n) edges, which we call sparse
graphs. All of the considered problems admit trivial 2O(n) time algorithms on such graphs. It should be noted
that it is crucial to obtain hardness results for sparse graphs: Many reductions between counting problems
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proceed by placing gadgets at edges, and this would map non-sparse graphs with ω(n) edges to target graphs
on ω(n) vertices, thus failing to provide 2Ω(n) time lower bounds for the target problem.

More precisely, we show the following slightly stronger statements: Assuming #ETH, each of the considered
problems admits constants ε, C > 0 such that the problem cannot be solved in time O(2εn) on n-vertex
graphs, even when these graphs have at most Cn edges. This clearly implies the claimed statements, and we
will elaborate on this in Section 2.3.

Theorem 1.1. Assuming #ETH, counting perfect matchings admits no 2o(n) time algorithm, even for graphs
that are bipartite, sparse, and unweighted.

In [14], only a lower bound of 2Ω(n/ logn) under #ETH was shown for this problem. Tight lower bounds
of 2Ω(n) were obtained only (a) under the randomized version rETH of ETH, which implies ETH and thus
in turn #ETH, but no converse direction is known, or (b) under #ETH, but by introducing negative edge
weights. Such edge weights are generally worrying, because it is a priori unclear how to remove them in
reductions to other problems.

By reduction from Theorem 1.1, we then obtain a hardness result for the matching polynomial, as defined
in (1), and a similar graph polynomial, the independent set polynomial. We will provide the precise definitions
of the matching and independent set polynomials and their associated evaluation problems in Section 2.1.

Theorem 1.2. Assuming #ETH, the problem of evaluating the matching polynomial µ(G; ξ) admits no 2o(n)

time algorithm at all fixed ξ ∈ Q, even on graphs that are sparse and unweighted. The same holds for the
independent set polynomial I(G; ξ) at all fixed ξ ∈ Q \ {0}.

Both statements hold in particular at ξ = 1, where these polynomials simply count matchings, and
independent sets, respectively. No lower bounds for µ(G; ξ) are stated in the literature. In [18], a lower bound
of 2Ω(n/ log3 n) for I(G; ξ) was shown at general ξ ∈ Q \ {0}, and a lower bound of 2Ω(n) was shown at ξ = 1,
but neither of these bounds apply to sparse graphs.

Finally, we show lower bounds for the Tutte polynomial. Again, the formal definition of this graph
polynomial will be provided in Section 2.1.

Theorem 1.3. Assuming #ETH, the Tutte polynomial T (x, y) for fixed points (x, y) ∈ Q2 cannot be evaluated
in time 2o(n) on sparse simple graphs if

• y 6= 1, and

• (x, y) /∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)}, and

• (x− 1)(y − 1) 6= 1.

In [14], only lower bounds of the type 2Ω(n/ logc n) could be shown for the Tutte polynomial on sparse
simple graphs. Please consider [14, Figure 1] for a plot of the points covered by Theorem 1.3: Our lower
bound applies at all points for which these authors show any super-polynomial lower bound. While our
theorem leaves open the non-easy points on the line y = 1, that is, all points (x, 1) with x 6= 1, tight lower
bounds for these points have been found by Brand et al. [3] since the conference version of the present paper
was published. We thus have:

Theorem 1.4 ([3]). If (x, y) ∈ Q2 is such that (x−1)(y−1) = 1 or (x, y) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)},
then T (x, y) can be computed in polynomial time. Otherwise, there is no 2o(n) time algorithm for computing
T (x, y) on sparse simple graphs unless #ETH fails.

Organization of this paper
In Section 2, we survey the necessary preliminaries from the theory of graph polynomials, polynomial
interpolation, and exponential-time complexity. Then, in Section 3, we introduce the interpolation framework
used for later results. In Section 4, we prove Theorems 1.1-1.3 as applications of this framework.
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2 Preliminaries
For k ∈ N, we abbreviate [k] = {1, . . . , k}. For sets X, write

(
X
2
)
for the set of all unordered pairs with

elements from X. The graphs in this paper are finite, undirected, and simple. If G is a graph, we implicitly
assume that V (G) = [n] for some n ∈ N, and consequently E(G) ⊆

([n]
2
)
. Graphs may feature edge- or

vertex-weights within intermediate steps of arguments, but all such weights will ultimately be removed to
obtain hardness results on unweighted graphs.

For simplicity, we phrase our results using only rational numbers, but they could be easily adapted to the
real or complex numbers, provided that these numbers are represented properly. We also write x← y for
substituting the expression y into an indeterminate x.

2.1 Graph polynomials
Our arguments and statements of results use graph polynomials, which are functions that map graphs G
to polynomials p(G) ∈ Q[x], where x is some set of indeterminates. They are usually defined such that
isomorphic graphs G and G′ are required to satisfy p(G) = p(G′), but we ignore this restriction for our
purposes. As a notational convention, we abbreviate p(G; ξ) = (p(G))(ξ) for the evaluation of the polynomial
p(G) at a point ξ.

The arguably most famous graph polynomial is the Tutte polynomial [4], which we define in the following,
along with the matching polynomial and the independent set polynomial [25].

Definition 2.1 (Matching and independent set polynomials). Let G be a graph and letM[G] denote the
set of (not necessarily perfect) matchings in G, that is, edge-subsets that are vertex-disjoint. For M ∈M[G],
let usat(G,M) denote the set of unmatched vertices of G in M . Then we define the matching polynomial µ
(also called matching defect polynomial) as

µ(G;x) =
∑

M∈M[G]

x|usat(G,M)|.

Similarly, let I[G] denote the independent sets of G. Then the independent-set polynomial I is

I(G;x) =
∑

S∈I[G]

x|S|.

Note that both the matching polynomial and the independent-set polynomial are weighted sums over its
eponymous structures. A similar definition applies in the case of the Tutte polynomial, but the weights are
more intricate.

Definition 2.2 (Tutte polynomial). For a subset A ⊆ E(G), let k(G,A) denote the number of connected
components in the edge-induced subgraph G[A]. Then define the classical parameterization of the Tutte
polynomial as

T (G;x, y) =
∑

A⊆E(G)

(x− 1)k(G,A)−k(G,E)(y − 1)k(G,A)+|A|−|V |.

We also use the random-cluster formulation of the Tutte polynomial:

Z(G; q, w) =
∑

A⊆E(G)

qk(G,A)w|A|.

The polynomials Z and T are essentially different parameterizations of each other: As noted in [14], with
q = (x− 1)(y − 1) and w = y − 1, we have

T (G;x, y) = (x− 1)−k(G,E)(y − 1)−|V (G)| · Z(G; q, w). (2)

We will mostly use the random-cluster formulation of the Tutte polynomial.
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Definition 2.3 (Perfect matching polynomial and permanent). Recall that we assume that for each graph
G, there is some n ∈ N such that V (G) = [n] and E(G) ⊆

(
V (G)

2
)
. For e ∈

(N
2
)
, let xe be an indeterminate.

We write PM[G] for the set of perfect matchings of G. Then the perfect matching polynomial is defined as

PerfMatch(G) =
∑

M∈PM[G]

∏
e∈M

xe.

See also [32, Section 3], and note that only finitely many indeterminates are present in PerfMatch(G). If G is
bipartite, we also denote PerfMatch(G) by the permanent perm(G). In doing so, we slightly abuse notation,
since the permanent is defined on matrices A, but we implicitly consider the bi-adjacency matrix A of the
bipartite graph G when speaking of the permanent of G.

For any graph polynomial p, we define two computational problems Coeff(p) and Eval(p), and a family of
problems EvalS(p) for subsets S ⊆ Q.

Coeff(p) : On input G, output the list of all coefficients of p(G). In this paper, we will consider this problem
only for univariate graph polynomials.

Eval(p) : On input G and an arbitrary point ξ, evaluate p(G; ξ). Here, ξ is to be considered as a rational-
valued assignment to the indeterminates of p(G). We will often consider ξ as vertex- or edge-weights
that are substituted into the indeterminates of p(G).

EvalS(p) : On input G and a point ξ whose coordinate-wise entries are all from S, evaluate p(G; ξ). The
problem differs from Eval(p) in that only specific points ξ are allowed as input. Note that, if p is
univariate and S = {a} is a singleton set, then EvalS(p) simply asks to compute p(G; a) for fixed
a on input G. We write Evala(p) in this case.

Example 2.4. For the matching polynomial µ, the problem Eval(µ) asks to evaluate µ(G; ξ) when given as
input a graph G and a number ξ. For fixed a, the problem Evala(µ) asks to evaluate µ(G; a) on input G. For
instance, the problem Eval0(µ) asks to count perfect matchings in a graph.

Rather than evaluating a multivariate graph polynomial p like PerfMatch on an unweighted graph G and a
point ξ, we often annotate edges/vertices of G with the entries of ξ, assuming V (G) and E(G) to be ordered.
We then speak of evaluating p(G′) on the weighted graph G′ derived from G and ξ this way.

2.2 Multivariate polynomial interpolation
Given a univariate polynomial p ∈ Q[x] of degree n, we can use Lagrange interpolation to compute the
coefficients of p when provided with the set of evaluations {(ξ, p(ξ)) | ξ ∈ Ξ} for any set Ξ ⊆ Q of size n+ 1. It
is known that polynomial interpolation can be generalized to multivariate polynomials p ∈ Q[x], for instance,
if Ξ is a sufficiently large grid.

Lemma 2.5. Let p ∈ Q[x1, . . . , xn] be a multivariate polynomial such that, for all i ∈ [n], the degree of xi in
p is bounded by di ∈ N. Furthermore, assume we are given sets Ξi ⊆ Q for i ∈ [n] such that |Ξi| = di + 1 for
all i ∈ [n]. Consider the cartesian product of these sets, that is,

Ξ := Ξ1 × . . .× Ξn.

Then we can compute the coefficients of p with O(|Ξ|3) arithmetic operations when given as input the set

{(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. For s, t, s′, t′ ∈ N and matrices A ∈ Qs×t and B ∈ Qs′×t′ , we write A⊗B for the Kronecker product
of A and B, which is the matrix A⊗B ∈ Qs·s′×t·t′ whose rows are indexed by [s]× [s′], whose columns are
indexed by [t]× [t′], and which satisfies

(A⊗B)(i,i′),(j,j′) = Ai,j ·Bi′,j′ for (i, i′) ∈ [s]× [s′] and (j, j′) ∈ [t]× [t′].
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For ` ∈ [n], enumerate Ξ` = {a(`)
1 , . . . , a

(`)
d`+1} and let A(`) denote the Vandermonde matrix of dimensions

(d` + 1)× (d` + 1) with A(`)
i,j = (a(`)

i )j for all i, j ∈ [d` + 1]. It is well-known that each Vandermonde matrix
A(`) for ` ∈ [n] has full rank, provided that a(`)

i 6= a
(`)
i′ for all i 6= i′. This condition is guaranteed in our

setting. Now define
A := A(1) ⊗ . . .⊗A(n).

Since each matrix A(`) for ` ∈ [n] has full rank, so does the matrix A, by an elementary property of the rank
of Kronecker products [24, Corollary 13.11].

Let c denote the vector that lists the coefficients of p in lexicographic order1, and let v denote the vector
that lists the evaluations p(ξ) for ξ ∈ Ξ in lexicographic order. Then it can be verified that Ac = v. Since A
has full rank, this system of linear equations can be solved with O(|Ξ|3) arithmetic operations for c, and we
obtain the coefficients of p.

Remark 2.6. By exploiting faster methods for solving linear systems of equations, the running time above
could be lowered from O(|Ξ|3) to O(|Ξ|ω) operations, where ω < 2.4 is the exponent of matrix multiplication.
This is however non-essential for our reductions.

2.3 Exponential-time complexity
We build upon the counting exponential-time hypothesis #ETH introduced in [14], which is a variant of the
corresponding hypothesis ETH for decision problems [20, 21].

Definition 2.7. The counting exponential-time hypothesis #ETH is the following claim: There is a constant
ε > 0 such that no deterministic algorithm with running time O(2εn) can count the satisfying solutions of
3-CNF formulas ϕ with n variables.

Note that #ETH rules out 2o(n) time algorithms for counting satisfying assignments of 3-CNF formulas
with n variables. In fact, #ETH is often stated as claiming precisely this lower bound. However, this latter
statement is a priori not equivalent to #ETH, as there could be, say, an uncomputable sequence of O(2εn)
time algorithms with ε → 0 for counting satisfying assignments. For this reason, some authors choose to
characterize the original definitions of ETH and #ETH as nonuniform [10].

A particularly useful tool for proving lower bounds under #ETH is the sparsification lemma, which was
first shown for the decision version ETH [21, Corollary 1] and later adapted to counting problems [14, Lemma
A.1]. This result allows us to assume that the formulas ϕ in Definition 2.7 are sparse, i.e., even an 2o(m) time
algorithm would refute #ETH, where m is the number of clauses of ϕ. Note that this indeed strengthens
#ETH, as we may assume n ≤ m, whereas we can a priori only guarantee m = O(n3) for 3-CNF formulas.

Theorem 2.8. Assuming #ETH, there is a constant ε > 0 such that no deterministic algorithm with running
time O(2εm) can count the satisfying solutions of 3-CNF formulas ϕ with m clauses.

This theorem is shown by an application of so-called sub-exponential reduction families [21, Section
1.1.4]. In the following definition, we adapt these reductions for our particular applications involving graph
polynomials. That is, we restrict our definition to problems A and B that receive graphs as inputs, and we
ensure that the instances generated by the reduction are sparse.

Definition 2.9. A sub-exponential reduction family from problem A to B is an algorithm T with oracle
access for B. Its inputs are pairs (G, ε) where G is an input graph for A, and ε with 0 < ε ≤ 1 is a running
time parameter, such that

1. T computes A(G), and it does so in time f(ε) · 2ε·|V (G)|, and

2. T only invokes the oracle for B on graphs G′ with at most g(ε) · (|V (G)|+ |E(G)|) vertices and edges.
1This vector includes the coefficients of all monomials with degree at most di in xi, even if some of these coefficients may be

zero.
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In these statements, f and g are computable functions that depend only on ε. We write A ≤Tserf B if such a
reduction exists.

That is, the running time of T (and hence, the number of oracle queries) can be chosen as O(2εn) for
arbitrarily small ε, but this comes at the cost of incurring a “blowup factor” of g(ε) in the reduction images.
It can be verified that sub-exponential reductions preserve lower bounds, see [21, Section 1.1.4]:

Lemma 2.10. Let A and B be problems that satisfy A ≤Tserf B, and assume that for all ε, C > 0, there is an
O(2εn) time algorithm for B on graphs with n vertices and at most Cn edges. Then, for all δ,D > 0, there is
an O(2δn) time algorithm for A on graphs with n vertices and at most Dn edges.

Corollary 2.11. If A ≤Tserf B and there are ε, C > 0 such that A cannot be solved in time O(2εn) on graphs
with n vertices and at most Cn edges, then there are δ,D > 0 such that B cannot be solved in time O(2δn) on
graphs with n vertices and at most Dn edges.

If the prerequisites of the above corollary hold, then it is in particular true that there is a constant D
such that B cannot be solved in time 2o(n) on graphs with n vertices and at most Dn edges.

3 The Block Interpolation Framework
In this section, we show how to obtain tight lower bounds for evaluating graph polynomials under #ETH
by means of multivariate polynomial interpolation. More specifically, for a general class of univariate graph
polynomials p, we show that, for certain fixed ξ ∈ Q, we can reduce the coefficient problem of p to the
evaluation problem of p on ξ.

Coeff(p) ≤Tserf Evalξ(p). (3)

This is useful due to the following reasons: Firstly, many counting problems can be expressed as evaluation
problems Evalξ(p) for adequate graph polynomials p and points ξ. For instance, the Tutte polynomial collects
an abundance of such examples. Secondly, as discussed in the introduction, many classical #P-hardness
proofs for Evalξ(p) first establish #P-hardness for Coeff(p) and then reduce this to the evaluation problem by
some form of interpolation. In many cases, the classical #P-hardness proof for Coeff(p) already yields a tight
lower bound under #ETH. Our technique then allows to transfer this lower bound to Evalξ(p).

The remainder of this section is structured as follows: In Section 3.1, we first describe the “format”
required from a univariate graph polynomial p for our framework to apply. Then we show in Section 3.2 how
to perform the reduction

Coeff(p) ≤Tserf EvalS(p), (4)

where p is a certain “multivariate version” of p, as mentioned in the introduction, and S ⊆ Q is a set whose
size depends only upon the running time parameter ε in the sub-exponential reduction family, but not on the
size of the input graph. In Section 3.3, we then show how to reduce

EvalS(p) ≤Tserf Evalξ(p) (5)

by means of gadget families, provided that these families exist. Pipelining the reductions (4) and (5) then
gives the full reduction (3).

3.1 Admissible Graph Polynomials
Our framework applies to univariate graph polynomials p that admit a canonical multivariate generalization.
More specifically, we call p subset-admissible if p is induced by a sieving function χ which filters the structures
counted by p, and a weight selector ω which assigns a particular kind of weight to each of these structures.
While this definition may seem abstract at first, we will soon observe that various popular graph polynomials
can be expressed naturally in this form.
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Definition 3.1. Let G denote the set of all unweighted simple graphs and recall that, for each graph G ∈ G,
we assume that there exists some n ∈ N such that V (G) = [n] and E(G) ⊆

([n]
2
)
. Let V = N denote the set of

all possible vertices of unweighted simple graphs, and let E =
(N

2
)
denote the set of all possible edges of such

graphs. We also write F = V ∪ E .
For a sieve function χ : G × 2F → Q and a weight selector ω : G × 2F → 2F , we define the graph

polynomial induced by the pair (χ, ω) as

pχ,ω(G;x) =
∑

A⊆V (G)∪E(G)

χ(G,A) · x|ω(G,A)|. (6)

We say that p is subset-admissible if p = pχ,ω for some (χ, ω) as above.

Remark. Note that χ and ω may be partial functions in the above definition, since, e.g., the value of χ(G,A)
is irrelevant if A 6⊆ V (G) ∪ E(G).

In the following, we observe that the matching polynomial µ and the independent set polynomial I from
Definition 2.1 are subset-admissible. It would be nice to show the same for the Tutte polynomials T and Z,
but this fails for syntactic reasons, since we defined admissible polynomials to be univariate. Instead, we will
work with restrictions of Z to Zq := Z(q, ·) for fixed q ∈ Q.

Example 3.2. Given a sentence φ, define [φ] = 1 if φ is true, and [φ] = 0 otherwise. With this notion, the
matching polynomial µ is induced by

χ : (G,A) 7→ [A ∈M[G]],
ω : (G,A) 7→ usat(G,A),

and I is induced similarly by χ : (G,A) 7→ [A ∈ I[G]] and ω : (G,A) 7→ A.
For q ∈ Q \ {0}, the polynomial Zq = Z(q, ·) is induced by χ : (G,A) 7→ qk(G,A) and ω : (G,A) 7→ A. We

stress again that Zq ∈ Q[x] is a univariate restriction of Z for fixed q ∈ Q.

Every subset-admissible graph polynomial of the form pχ,ω admits a canonical multivariate generalization
pχ,ω on indeterminates x = {xa | a ∈ F}, which is given by

pχ,ω(G; x) =
∑

A⊆V (G)∪E(G)

χ(G,A)
∏

a∈ω(G,A)

xa. (7)

Please note that only finitely many indeterminates from x are present in pχ,ω(G) for any (finite) graph G.
Compare (7) to (6): It is clear that, when substituting xa ← x for all a ∈ F , the multivariate polynomial
pχ,ω coincides with the univariate polynomial pχ,ω. Note also that p is multilinear by definition. Similar
multivariate generalizations were known, e.g., for the Tutte polynomial [28].

Example 3.3. Consider the polynomial p = pχ,ω induced by

χ : (G,A) 7→ [A ∈ PM[G]],
ω : (G,A) 7→ A,

This polynomial p admits the simple expression p(G) = mG · x|V (G)|/2, where mG denotes the number of
perfect matchings in G. Note that p(G) contains at most one monomial. Its multivariate generalization
however gives us the richer structure p(G) = PerfMatch(G).

Furthermore, for fixed q ∈ Q, the multivariate generalization of Z(q, ·) yields the so-called multivariate
Tutte polynomial considered in [28]:

Z(G; q, ·) =
∑

A⊆E(G)

qk(G,A)
∏
e∈A

xe.
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If p is a univariate subset-admissible polynomial and p is its multivariate generalization, then the following
simple relation holds between the coefficients of p and p:

Lemma 3.4. For any monomial θ, let cθ denote the coefficient of θ in p. For k ∈ N, let Ck denote the set
of monomials with total power k in p. Then for any k ∈ N, the coefficient of xk in p is equal to

∑
θ∈Ck

cθ.

Proof. When substituting xa ← x for all a ∈ F , we obtain p from p, and the monomials transformed to xk
are precisely the members of Ck. This proves the claim by collecting the coefficients of these monomials.

3.2 First Reduction Step: Multivariate Interpolation
Let p = pχ,ω be a subset-admissible polynomial with multivariate generalization p. For ease of presentation,
we assume for now that ω : G × 2F → 2E , that is, ω maps only into edge-subsets rather than subsets of edges
and vertices. The general case is shown identically, with more notational overhead.

We perform the reduction Coeff(p) ≤Tserf Eval(p) by means of interpolation. Recall that, in the univariate
case, to obtain p(G) for an m-edge graph G, we require the evaluations of p(G; ξ) at m+ 1 distinct points ξ.
For the multivariate generalization p, we could in principle interpolate via Lemma 2.5: Since p is multilinear,
this requires the evaluations of p(G; ξ) on a grid Ξ with two distinct values per coordinate, say Ξ = [2]m. By
Lemma 3.4, the coefficients of p can be obtained from those of p, so we could interpolate p to recover p.

While this detour seems extremely wasteful due to its 2m (rather than m+ 1) incurred evaluations, it
yields the following reward: For each variable xe in p, Lemma 2.5 only requires us to substitute two distinct
values (or weights) into xe, whereas interpolation on p requires m+ 1 distinct substitutions to its only variable
x. The small number of distinct weights will prove very useful, since each such weight will be simulated by a
certain gadget. If there are only two weights to simulate, then we require only two fixed gadgets, whose sizes
are trivially bounded by O(1).

However, to interpolate p, we still need the prohibitively large number of 2m evaluations. To overcome
this, we trade off the number of evaluations with the numbers of distinct values per edge, and thus, with the
size of the gadgets ultimately required. To this end, we group the edges into blocks and treat all edges within
each block identically, similar to [12]. At this point, the full power of sub-exponential reduction families from
Definition 2.9 is used crucially.

Lemma 3.5. Let p be subset-admissible, with multivariate generalization p, and let W = (w0, w1, . . .) be an
infinite recursively enumerable sequence of pairwise distinct numbers in Q.

Then Coeff(p) ≤Tserf EvalW (p) holds by a reduction that satisfies the following for all inputs (G, ε): There
is some number d = d(ε) depending only upon ε, such that all oracle queries p(G′) are asked only on graphs
G′ obtained from G by introducing edge-weights from Wd = {w0, . . . , wd}.

When invoking Lemma 3.5, the list W contains the weights that can be simulated by gadgets. Note
that any such list W can be used if W is infinite and recursively enumerable. Furthermore, note that p is
evaluated only on edge-weighted versions of G itself; properties such as bipartiteness of G or its size are hence
trivially preserved.

Proof of Lemma 3.5. Let d ∈ N be a parameter, to be chosen later depending on ε, and let G = (V,E) be an
m-edge graph for which we want to determine the coefficients of p = p(G). Let

x = {xe | e ∈ E}

denote the indeterminates of p and note that both p and p have maximum degree m by definition.
In the first step, partition E into t := dm/de sets E1, . . . , Et of size at most d each (which we call blocks),

using an arbitrary equitable assignment of edges to blocks. Define new indeterminates

y = {y1, . . . , yt}

and a new multivariate polynomial q ∈ Q[y] from p by substituting

xe ← yi for all i ∈ [t] and e ∈ Ei.

10



p ∈ Q[x] p ∈ Q[x] q ∈ Q[y]
number of indeterminates 1 m t = dm/de

max. degree per indeterminate m 1 d
max. number of monomials m+ 1 2m (d+ 1)t

Table 1: The polynomials p, p and q appearing in the proof of Lemma 3.5.

We are working with three polynomials, namely p, p and q, summarized in Table 1 for convenience.
While the total degree of q is bounded by m, the degree of each indeterminate yi in q is bounded by d, since
each block contains at most d edges. Hence, the number of monomials in q is at most (d+ 1)t = 2d′m with
d′ = O(log(d)/d). Note that d′ → 0 as d→∞.

We will ultimately obtain the coefficients of q via interpolation, but first, let us observe that the coefficients
of q allow us to determine those of the univariate version p. Write cpk for the coefficient of xk in p and cq

θ for
the coefficient of the monomial θ in q. Analogously to Lemma 3.4, we have cpk =

∑
θ∈Ck

cq
θ where Ck for

k ∈ N is the set of all monomials with total power k in q. This allows us to compute the coefficients of p
from those of q.

It remains to describe how to obtain the coefficients of q. For this, recall the definition of Wd from the
statement of the lemma. We evaluate q on the grid Ξ = (Wd)t using the oracle for EvalW (p): For each ξ ∈ Ξ,
substitute yi ← ξi for all i ∈ [t] to obtain an edge-weighted graph Gξ that contains only weights from Wd,
and for which we can thus compute p(Gξ) by an oracle call to EvalW (p).

Using |Ξ| = (d+ 1)t = 2d′m oracle calls and grid interpolation via Lemma 2.5, we obtain all coefficients of
q with O(23d′m) arithmetic operations. By definition of p and q and the set Wd, each arithmetic operation
involves numbers on at most O(m) · g(d) bits for a computable function g. Since d′ → 0 as d→∞, we can
pick d large enough such that 3d′ ≤ ε, and thus achieve running time O(2εm). No vertices or edges were
added to G during this reduction.

3.3 Second Reduction Step: Weight Simulation by Gadgets
Lemma 3.5 gives a sub-exponential reduction family from Coeff(p) to Eval(p) that maps instances (G, ε)
to edge-weighted versions obtained from G by introducing f(ε) distinct edge-weights for some computable
function f . For the full reduction, this latter problem must be reduced to Evalξ(p) for fixed ξ ∈ Q.

This may not work for all ξ ∈ Q: For instance, the evaluation problem Eval0(I) for the independent-set
polynomial I at the point 0 is trivial. We must hence impose several conditions on ξ to enable this reduction.

Definition 3.6. Let p be subset-admissible, let ξ ∈ Q and

• let W = (w0, w1, . . .) be a sequence of pairwise distinct values in Q,

• let H = (H0, H1, . . .) be a sequence of edge-gadgets, which are triples (H,u, v) with a graph H and
attachment vertices u, v ∈ V (H), and

• let F : G ×Q→ Q \ {0} be a polynomial-time computable function, which we call a factor function.

If G is an edge-weighted graph with weights from W , let T (G) be the unweighted graph obtained by replacing,
for i ∈ N, each edge uv ∈ E(G) of weight wi with a fresh copy of the edge-gadget Hi by identifying u, v
across G and Hi.

We say that (H, F ) allows to reduce EvalW (p) to Evalξ(p) if the following holds: Whenever G is a graph
with edge-weights from W , then

p(G) = p(T (G); ξ)
F (G, ξ) . (8)

Remark 3.7. The same definition applies to vertex-weighted graphs; here we use vertex-gadgets, which are
pairs (H, v) with an attachment vertex v ∈ V (H). Vertex-gadgets are inserted at a vertex v ∈ V (G) by
identifying v in H and G.
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At the end of this subsection, we discuss several possible extensions of this definition. As a first example
for the notions introduced in Definition 3.6, we consider (well-known) edge-gadgets for PerfMatch.

Example 3.8. Let p denote the polynomial from Example 3.3, whose multivariate generalization satisfies
p = PerfMatch. For k ∈ N, let Hk be the edge-gadget obtained by placing k parallel edges between two fresh
vertices u and v and subdividing each edge twice. Let H = (H1, H2, . . .), let N = (1, 2, 3, . . .) and let F denote
the function mapping all inputs to 1. Then it can be seen that (H, F ) allows to reduce EvalN(p) to Eval1(p).

We easily obtain the following lemma from Definition 3.6.

Lemma 3.9. Let W = (w0, w1, . . .) and let (H, F ) allow to reduce EvalW (p) to Evalξ(p). Let G be a graph
with edge-weights from W . Then we can compute p(G) from p(T (G); ξ) in polynomial time via (8). If G
has n vertices and m edges, and only contains edge-weights wi with i ≤ t for some t ∈ N, then T (G) has
O(n+ sm) vertices and edges, where s = maxi∈[t] |V (Hi)|+ |E(Hi)| depends only on H and t.

By combining Lemmas 3.5 and 3.9, we obtain the wanted reduction from Coeff(p) to Evalξ(p) at fixed
points ξ ∈ Q and finish the set-up of our framework.

Theorem 3.10. Let p be subset-admissible and let ξ ∈ Q be fixed. Assuming #ETH, there are constants
ε, C > 0 such that the problem Evalξ(p) admits no O(2εn) time algorithm on unweighted graphs with n vertices
and at most Cn edges, provided that the following two conditions hold:

Coefficient hardness: Assuming #ETH, there are constants δ,D > 0 such that Coeff(p) admits no O(2δn)
time algorithm on unweighted graphs with n vertices and at most Dn edges.

Weight simulation: There is a recursively enumerable sequence of pairwise distinct weightsW = (w0, w1, . . .),
a sequence of gadgets H = (H0, H1, . . .), and a function F such that (H, F ) allows to reduce EvalW (p)
to Evalξ(p).

Proof. We present a sub-exponential reduction family from Coeff(p) to Evalξ(p). Given γ > 0 and a graph G
with n vertices and Dn edges, first apply Lemma 3.5: This way, we reduce Coeff(p) to O(2γn) instances of
EvalW (p) on graphs G′ that only use weights w0, . . . , ws with s = s(γ).

Since (H, F ) allows to reduce EvalW (p) to Evalξ(p), we can invoke Lemma 3.9 and reduce each instance
G′ for EvalW (p) to an instance of Evalξ(p) on the graph T (G′). This graph features at most g(s) · D · n
vertices and edges, where g is a computable function. Note that this second reduction runs in polynomial
time and also satisfies the requirements for a sub-exponential reduction. Altogether, the theorem then follows
from Corollary 2.11.

Let us remark some corollaries of the reduction shown above.
Remark 3.11. If the source instance G for Coeff(p) has maximum degree ∆, then the reduction images T (G′)
obtained above on parameter ε feature maximum degree c∆ for a constant c = c(ε). By suitable choice of H,
we can also ensure other properties on T (G):

• If G is bipartite and all edge-gadgets (H,u, v) ∈ H can be 2-colored such that u and v receive different
colors, then T (G′) is bipartite as well. This can be verified, e.g., for Example 3.8.

• If G is planar and all edge-gadgets (H,u, v) ∈ H admit planar drawings with u and v on their outer
faces, then T (G′) is planar as well.

To conclude this subsection, we list several possible generalizations of Definition 3.6 and Theorem 3.10
that we chose not to include in our formulation.

1. We may extend Definition 3.6 to incorporate weight simulations that proceed non-locally, that is, in
a less obvious way than by inserting local gadgets at edges. This route was taken in [3] since the
conference version of this article was published.
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2. In Lemma 3.5, we do not need to evaluate p on a grid W t for a fixed coordinate set W . Instead, we
could as well interpolate on a grid W1 × . . .×Wt, provided that each Wi is large enough and that the
weights do not depend on the size of G.

3. We may also allow 2o(m) time for the computation of the factor function F (Gw, ξ). Rather than allowing
only a multiplicative factor, we could also allow an arbitrary function to be computed from p(T (G); ξ)
and the input.

4 Applications of the Framework
In the following subsections, we apply Theorem 3.10 to obtain tight lower bounds for concrete counting
problems, including the unweighted permanent in Section 4.1, the matching and independent set polynomials
in Section 4.2, and the Tutte polynomial in Section 4.3.

4.1 The Unweighted Permanent
As mentioned in the introduction, it was shown in [14] that, unless #ETH fails, the problem Eval{−1,1}(perm)
on graphs with n vertices and O(n) edges admits no algorithm with running time 2o(n). For convenience,
we recall that this is the problem of evaluating the permanent on graphs with edge-weights +1 and −1. In
the same paper, it was also shown that an algorithm for the unweighted permanent on such graphs would
falsify rETH, the randomized version of ETH. We improve upon this by showing that it is sufficient to assume
#ETH, which is a priori weaker than ETH and also constitutes a more natural assumption for lower bounds
on counting problems.

Theorem (Restatement of Theorem 1.1). Assuming #ETH, there are constants ε, C > 0 such that the
problem Eval1(perm) of counting unweighted perfect matchings in bipartite graphs cannot be solved in time
O(2εn) on graphs with n vertices and at most Cn edges.

Proof. In the following, we invoke Theorem 3.10 to show

Eval{−1,1}(perm) ≤Tserf Eval1(perm).

Let G be a graph with edge-weights from {−1, 1} and let E−1(G) denote the set of edges with weight −1
in G. Define a sieve function and weight selector

χ(G,A) = [A ∈ PM[G]],
ω(G,A) = A ∩ E−1(G),

and observe that these induce a univariate graph polynomial p = pχ,ω with

p(G;−1) = perm(G).

Since knowing all coefficients of p(G) clearly allows to evaluate p(G;−1), we obtain from [14, Thm. 1.3] that
there are constants δ,D > 0 such that Coeff(p) cannot be solved in time O(2δn) on n-vertex graphs with Dn
edges, unless #ETH fails. Hence the coefficient hardness condition of Theorem 3.10 is satisfied.2

To check the weight simulation condition, recall the pair (H, F ) from Example 3.8 that allows to reduce
EvalN(p) to Eval1(p). Hence all prerequisites for Theorem 3.10 are fulfilled, so counting perfect matchings in
unweighted graphs has the desired lower bound. By Remark 3.11, the reduction images T (G) constructed by
the theorem are bipartite as well. This proves the theorem.

2In fact, the authors of [14] state their lower bound as ruling out 2o(n) time algorithms for Coeff(p) on graphs with n vertices
and O(n) edges. This is however only to simplify the presentation of their result. Their reduction from counting satisfying
assignments for 3-CNFs to Eval{−1,1}(perm) is in fact a ≤T

serf reduction and hence also supports the stronger claim needed for
the coefficient hardness condition of Theorem 3.10.
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We collect a series of corollaries for other counting problems from this theorem. Let L(G) denote the line
graph of a graph G = (V,E): This graph has vertex set E, and e, e′ ∈ E are defined to be adjacent in L(G)
iff e ∩ e′ 6= ∅. A graph is a line graph if it is the line graph of some graph.

Corollary 4.1. Assuming #ETH, there is a constant ε > 0 for each of the following problems such that no
O(2εn) time algorithm solves the problem:

1. Eval1(perm), that is, counting perfect matchings in bipartite graphs, in graphs with n vertices and
maximum degree 3.

2. Counting maximum independent sets (or minimum vertex covers), even in line graphs with n vertices
and maximum degree 4.

3. Counting minimum-weight satisfying assignments to monotone 2-CNF formulas on n variables, even if
every variable appears in at most 4 clauses.

Proof. For the first statement, we use a known reduction from the permanent on general bipartite graphs
to bipartite graphs of maximum degree 3, shown in [13, Theorem 6.2]. This reduction maps graphs with n
vertices and m edges to graphs with O(n+m) vertices and edges.

For the second statement, if G has m edges and maximum degree ∆ = ∆(G), then L(G) has m vertices
and maximum degree 2(∆− 1). The set PM[G] corresponds bijectively to the independent sets of size n/2
in L(G), which are the maximum independent sets in L(G), unless G has no perfect matching, which we can
test efficiently. The maximum independent sets in turn stand in bijection with the minimum vertex covers
of L(G) via complementation. We thus obtain the statement by reduction from Eval1(perm) on graphs of
maximum degree 3.

For the third statement, observe that the minimum vertex covers of a graph H = (V,E) correspond
bijectively to the minimum-weight satisfying assignments of an associated monotone 2-CNF formula ϕ: To
obtain this formula, create a variable xv for each v ∈ V and a clause (xu ∨ xv) for each uv ∈ E. This is a
standard reduction, noted also in [29, Proposition 2.1].

4.2 The Matching and Independent Set Polynomials
We prove Theorem 1.2, a tight lower bound for the evaluation problem of the matching polynomial Evalξ(µ)
at fixed ξ ∈ Q, by invoking Theorem 3.10. As described in the introduction, the perfect matchings of G are
counted by the coefficient of x0 in µ(G), so Coeff(µ) and Eval0(µ) have the same lower bound as Eval1(perm).
This settles the requirement of coefficient hardness in Theorem 3.10. In the following, we analyze the example
for an interpolation-based reduction from the introduction (where we reduced counting perfect matchings to
counting matchings) to show that µ also admits weight simulation.

Lemma 4.2. Let H = (Hi)i∈N be the following family of vertex-gadgets, where Hi contains one attachment
vertex v, adjacent to an independent set of i vertices.

Consider ξ ∈ Q \ {0} to be fixed. Let W = (wt)t∈N with wt = 1 + t
ξ2 for t ∈ N. Given a graph G with

vertex-weights from W , let at for t ∈ N denote the number of vertices of weight wt in G. We define

F (G, ξ) =
∏
t∈N

ξt·at .

Then (H, F ) allows to reduce EvalW (µ) to Evalξ(µ).

14



Proof. Recall the graph transformation T (G) for vertex-weighted graphs from Definition 3.6 and Remark 3.7:
At every vertex of weight wt, for t ∈ N, we attach the gadget Ht. To show that (H, F ) indeed satisfies
Definition 3.6, we need to show that

µ(T (G), ξ) = F (G, ξ) · µ(G). (9)

To see this, observe that every matching M in G can be extended locally at vertices v ∈ V (G) by edges
of vertex-gadgets to obtain a matching in T (G). Let v ∈ V (G) be a vertex of weight wt for t ∈ N. If
v /∈ usat(G,M), then M cannot be extended at the vertex v, and v incurs the factor ξt in µ(T (G)). If
v ∈ usat(G,M), then we can choose not to extend v, or we may choose to extend by one of the t edges of Ht,
so we obtain a factor of

ξt + tξt−2 = ξt(1 + t

ξ2 ).

at the vertex v. This establishes (9), and hence the lemma.

The desired theorem follows.
Theorem (Restatement of Theorem 1.2). If #ETH holds, then for each ξ ∈ Q, there are constants ε, C > 0
such that Evalξ(µ) cannot be solved in time O(2εn) on graphs with n vertices and maximum degree C. With
ξ = 1, this holds especially for Eval1(µ), which amounts to counting matchings.
Proof. By Corollary 4.1, there is a constant δ > 0 such that Coeff(µ) cannot be solved in time O(2δn) unless
#ETH fails, even on graphs with maximum degree 3. This settles the requirement of coefficient hardness in
Theorem 3.10, even on graphs of maximum degree 3.

In Lemma 4.2, we have seen that µ admits weight simulations. By Remark 3.11 and the reduction from
Coeff(µ) on graphs of maximum degree 3, the queries issued by Theorem 3.10 have maximum degree O(1),
which implies the degree bound in the theorem.

Remark 4.3. For later use, note that the same proof yields the same lower bound for µ(G; ξ) even when
ξ ∈ C is a complex number with ξ =

√
c for c ∈ Q. To this end, note that we may assume that G has an

even number of vertices (for instance, by adding an isolated vertex and dividing µ(G; ξ) by ξ). Then we can
compute µ(G; ξ) over the rational numbers: Every matching in G has an even number of unmatched vertices,
and thus only even powers of ξ appear in µ(G; ξ).

As in Corollary 4.1, we can easily obtain corollaries for the independent set polynomial I and for counting
monotone 2-SAT, improving upon [18, 14].
Corollary 4.4. Assuming #ETH, there is a constant ε > 0 for each of the following problems such that no
O(2εn) time algorithm solves the problem:

1. Evalξ(I) on line graphs of maximum degree O(1), for ξ ∈ Q \ {0}, especially at ξ = 1, which amounts to
counting independent sets (or vertex covers).

2. Counting satisfying assignments to monotone 2-CNF formulas, even if every variable appears in at
most O(1) clauses.

Proof. We first prove the first statement: If G has n vertices and m edges, and satisfies ∆(G) = O(1), then
L(G) has m vertices and ∆(L(G)) = O(1). For every matching M ∈M[G], we have

2|M |+ |usat(M)| = n,

and since matchings of G stand in bijection with independent sets of L(G),

µ(G; ξ) =
∑

M∈M[G]

ξ|usat(M)| = ξn ·
∑

M∈M[G]

ξ−2|M | = ξn · I(L(G); ξ−2).

Hence, for fixed ξ 6= 0, an algorithm for Evalξ(I) on line graphs implies one for Evalξ′(µ) on general graphs
with ξ′ =

√
ξ−1, but this is ruled out by Theorem 1.2 and Remark 4.3.

For the second statement, recall that independent sets and vertex covers stand in bijection. We then
reduce from counting vertex covers as in Corollary 4.1.
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4.3 The Tutte Polynomial
To apply the block-interpolation framework to the Tutte polynomial, we use univariate restrictions of Z, as
discussed in Example 3.2. Let Zq = Z(q, ·) for fixed q ∈ Q \ {0}. As in [14], for q = 0, we instead consider
the polynomial

Z0(G;w) =
∑

A⊆E(G)

0k(G,A)−k(G,E)w|A|.

Note that terms corresponding to A ⊆ E(G) with k(G,A) 6= k(G,E) vanish in Z0(G;w). We will use Z0 to
prove lower bounds for the Tutte polynomial on the line defined by x = 1: If (x, y) ∈ Q2 satisfies x = 1, we
can write q = 0 and w = y − 1 and obtain

T (G;x, y) = (x− 1)−k(G,E) · (y − 1)−|V (G)| · Z(G; q, w)
= w−|V (G)| · Z0(G;w). (10)

Using Theorem 3.10, we then prove lower bounds for Evalw(Zq) at fixed q, w ∈ Q. As in the previous
examples, we first require a lower bound for Coeff(Zq), which we adapt from [14].

Lemma 4.5. [14, Propositions 4.1 and 4.3] Assuming #ETH, for each q ∈ Q \ {1}, there are constants
ε, C > 0 such that the problem Coeff(Zq) cannot be solved in time O(2εn) on n-vertex graphs with Cn edges.3

Remark 4.6. In fact, we could also use block interpolation to simplify this result from [14] by performing an
interpolation step that needed to be circumvented by the authors with some tricks. However, since Lemma 4.5
was already shown in [14], we omit the self-contained proof that would still require some arguments which
are very specific to the Tutte polynomial.

Note that the case q = 1 is left uncovered by this lemma, and we consequently cannot prove lower bounds
at q = 1, where Coeff(Z1) in fact becomes polynomial-time solvable.

In [14], the problem Coeff(Zq) with q 6= 1 is reduced to unweighted evaluation via Theta graphs and
wumps, families of edge-gadgets that incur only O(logc n) blowup. This economical (but still not constant)
factor however requires a quite involved analysis. Using block interpolation, we can instead use mere paths,
and hence perform stretching, a classical weight simulation technique for the Tutte polynomial [22, 14, 16].
In the following, please recall Zq, as defined by Example 3.2 and (7).

Lemma 4.7. For k ∈ N, let Pk denote the path on k edges with distinguished start/end vertices u, v ∈ V (Pk)
and let P = (P1, P2, . . .). Let w, q ∈ Q be fixed with w 6= 0 and q /∈ {1,−w,−2w}. Then there is an infinite
recursively enumerable sequence of pairwise distinct weights W and a factor function F such that (P, F )
allows to reduce EvalW (Zq) to Evalw(Zq).

Proof. We have to distinguish whether q = 0 or q 6= 0 holds, and we obtain different weights and factor
functions in the different cases.

If q = 0, we define W = (wk)k∈N with the pairwise distinct weights wk = w
k for integers k ∈ N. Given a

graph G with edge-weights from W , let ak(G) for k ∈ N denote the number of edges in G with weight wk,
and define

F (G) =
∏
k∈N

(kwk−1)ak(G).

Then (P, F ) allows to reduce EvalW (Z0) to Evalw(Z0), see for instance [14, Corollary 6.7] and [15].
If q 6= 0, then the family of paths realizes different weights and requires a different factor function. Define

W = (wk)k∈N with
wk = q

(1 + q
w )k − 1

3In [14], this result is stated as Coeff(Zq) not having 2o(m) time algorithms for q ∈ Q \ {1}. However, the paper actually
shows the slightly stronger claim in the statement of the lemma.
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and observe that these weights are pairwise distinct provided that 1 + q
w /∈ {−1, 0, 1}, which holds by q 6= 0

and the prerequisites of the proposition. Given a graph G with edge-weights from W , let ak(G) for k ∈ N
denote the number of edges in G with weight wk and define

F (G) = q−|E(G)|
∏
k∈N

((q + w)k − wk)ak(G).

It is shown [14, Lemma 6.2] and [28, Prop. 2.2 and 2.3] that (P, F ) allows to reduce Zq on W to Zq(w).

By combining Lemma 4.5 for the coefficient hardness and Lemma 4.7 for weight simulations, we can then
invoke Theorem 3.10 and obtain:

Lemma 4.8. Let w 6= 0 and q /∈ {1,−w,−2w}. Assuming #ETH, there are constants ε, C > 0 such that the
problem Evalw(Zq) admits no O(2εn) time algorithm on graphs with n vertices and at most Cn edges.

From this lemma, we can derive the hardness of the problem Z(q, w) at most points with q /∈ {0, 1}
analogously as in [14, Proposition 6.4].

Lemma 4.9. Let (q, w) ∈ Q2 \ {(4,−2), (2,−1), (2,−2)} with q /∈ {0, 1} and w 6= 0. Assuming #ETH, there
are constants ε, C > 0 such that the problem Evalw(Zq) admits no O(2εn) time algorithm on graphs with n
vertices and at most Cn edges.

Proof. By Lemma 4.8, the claim must only be shown if q ∈ {−w,−2w} holds in addition to the prerequisites
of Lemma 4.9. As in [14, Proposition 6.4], we then use the operations of thickening and stretching to reduce
the problem Evalw′(Zq) for some w′ with q /∈ {−w′,−2w′} to Evalw(Zq). The hardness of Evalw(Zq) then
follows from Lemma 4.8.

To proceed this way, let Gk be the graph obtained from G by replacing each edge with k parallel edges,
followed by subdividing each edge once. Then there exists a number wk, depending on q, w, and k, such that
Z(G; q, wk) can be computed in polynomial time from the value Z(Gk; q, w), as shown in [14, Proposition 6.4].
The same reference shows that, if the prerequisites of the lemma are satisfied, a suitable value k = k(q, w)
can be chosen such that q /∈ {−wk,−2wk}. Since q, w are fixed, we have k = O(1), and the graph Gk hence
has O(|V (G)|+ |E(G)|) vertices and edges. This proves the claim.

By the substitution (2) that maps Z(·, ·) to the classical parameterization T (·, ·) of the Tutte polynomial,
we can rephrase this result in terms of T .

Theorem (Restatement of Theorem 1.3). Assuming #ETH, there are constants ε, C > 0 such that the Tutte
polynomial T (x, y) cannot be evaluated in time O(2εn) on graphs with n vertices and at most Cn edges,
provided that y 6= 1, and (x, y) /∈ {(−1,−1), (0,−1), (−1, 0)}, and (x− 1)(y − 1) 6= 1.

Proof. Using (2), computing Z(G; q, w) is equivalent to computing T (G;x, y) with x = q
w + 1 and y = w + 1,

provided that q 6= 0. We use this to rephrase the evaluations Z(q, w) for (q, w) ∈ Q2 that are not shown to
be hard by Lemma 4.9 in terms of T (x, y).

1. If w = 0, then y = 1.

2. If (q, w) ∈ {(4,−2), (2,−1), (2,−2)}, then (x, y) ∈ {(−1,−1), (−1, 0), (0,−1)}.

3. If q = 1, then (x− 1)(y − 1) = 1.

Hence, Lemma 4.9 shows a tight lower bound for all points (x, y) ∈ Q2 relevant for the theorem that satisfy
q = (x− 1)(y − 1) 6= 0. We then consider those points with q = 0. Since we may assume y 6= 1, only points
(x, y) with x = 1 and y 6= 1 are left open. In this case, we invoke Lemma 4.8 with q = 0 and w = y− 1. Using
(10), we then obtain T (G; 1, y) = w−|V (G)| ·Z0(G;w). Since w 6= 0 and Evalw(Z0) admits a tight lower bound
under #ETH by Lemma 4.8, the theorem follows.
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If either of the last two conditions of Theorem 1.3 does not hold, then the evaluation of the Tutte
polynomial is known to admit a polynomial-time algorithm. The #P-hard points on the line given by y = 1
are however not covered by Theorem 1.3, and they actually do not fit into the block interpolation framework
as defined in this paper. Nevertheless, as discussed earlier, this line was settled recently [3] by extending the
block interpolation framework to a setting where gadgets are not required to be placed locally at vertices.

Acknowledgements: The author thanks Holger Dell and the anonymous reviewers for providing very
helpful comments that improved many aspects of this paper.

References
[1] Markus Bläser and Radu Curticapean. The complexity of the cover polynomials for planar graphs of

bounded degree. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011.
Proceedings, volume 6907 of Lecture Notes in Computer Science, pages 96–107. Springer, 2011.

[2] Markus Bläser and Holger Dell. Complexity of the cover polynomial. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th Interna-
tional Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture
Notes in Computer Science, pages 801–812. Springer, 2007.

[3] Cornelius Brand, Holger Dell, and Marc Roth. Fine-grained dichotomies for the Tutte plane and Boolean
#CSP. In 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August
24-26, 2016, Aarhus, Denmark, pages 9:1–9:14, 2016.

[4] Thomas Brylawski. The Tutte polynomial, matroid theory and its applications. Centro Internazionale
Matematico Estivo, pages 125–275, 1982.

[5] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
volume 5125 of Lecture Notes in Computer Science, pages 646–661. Springer, 2008.

[6] Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In Howard J. Karloff and
Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 909–920. ACM, 2012.

[7] Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the capture of vanishing
signatures. SIAM J. Comput., 45(5):1671–1728, 2016.

[8] Jin-yi Cai, Pinyan Lu, and Mingji Xia. A computational proof of complexity of some restricted
counting problems. In Jianer Chen and S. Barry Cooper, editors, Theory and Applications of Models of
Computation, 6th Annual Conference, TAMC 2009, Changsha, China, May 18-22, 2009. Proceedings,
volume 5532 of Lecture Notes in Computer Science, pages 138–149. Springer, 2009.

[9] Jin-yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant* problems of boolean domain. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1714–1728. SIAM,
2011.

[10] Yijia Chen, Kord Eickmeyer, and Jörg Flum. The exponential time hypothesis and the parameterized
clique problem. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, Parameterized and Exact
Computation - 7th International Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012.
Proceedings, volume 7535 of Lecture Notes in Computer Science, pages 13–24. Springer, 2012.

18



[11] Radu Curticapean. The simple, little and slow things count: on parameterized counting complexity. PhD
thesis, Saarland University, 2015.

[12] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ra-
mamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. ACM
Trans. Algorithms, 12(3):41:1–41:24, 2016.

[13] Paul Dagum and Michael Luby. Approximating the permanent of graphs with large factors. Theoretical
Computer Science, 102(2):283–305, 1992.

[14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential time
complexity of the permanent and the Tutte polynomial. ACM Transactions on Algorithms, 10(4):21:1–
21:32, 2014.

[15] Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial. Information and
Computation, 206(7):908–929, 2008.

[16] Leslie Ann Goldberg and Mark Jerrum. The complexity of computing the sign of the Tutte polynomial.
SIAM Journal on Computing, 43(6):1921–1952, 2014.

[17] Ulrich Hertrampf. Relations among Mod-classes. Theoretical Computer Science, 74(3):325–328, 1990.

[18] Christian Hoffmann. Exponential time complexity of weighted counting of independent sets. In Raman
and Saurabh [27], pages 180–191.

[19] Thore Husfeldt and Nina Taslaman. The exponential time complexity of computing the probability that
a graph is connected. In Raman and Saurabh [27], pages 192–203.

[20] Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

[21] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[22] François Jaeger, Dirk L. Vertigan, and Dominic J.A. Welsh. On the computational complexity of
the Jones and Tutte polynomials. Mathematical proceedings of the Cambridge Philosophical Society,
108(1):35–53, 1990.

[23] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. Journal of the ACM, 51(4):671–697, 2004.

[24] Alan J. Laub. Matrix Analysis For Scientists And Engineers. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2004.

[25] Vadim E. Levit and Eugen Mandrescu. The independence polynomial of a graph - a survey. In
S. Bozapalidis, A. Kalampakas, and G. Rahonis, editors, Proceedings of the 1st International Conference
on Algebraic Informatics, October 20-23, 2005, Thessaloniki, Greece, pages 233–254, 2005.

[26] Nathan Linial. Hard enumeration problems in geometry and combinatorics. SIAM Journal on Algebraic
and Discrete Methods, 7(2):331–335, 1986.

[27] Venkatesh Raman and Saket Saurabh, editors. Parameterized and Exact Computation - 5th International
Symposium, IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings, volume 6478 of Lecture
Notes in Computer Science. Springer, 2010.

[28] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In
Surveys in Combinatorics, volume 327, pages 173–226, 2005.

19



[29] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM Journal on
Computing, 31(2):398–427, 2001.

[30] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–
201, 1979.

[31] Leslie G. Valiant. Accidental algorithms. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 509–517, 2006.

[32] Leslie G. Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594, 2008.

20


	1 Introduction
	1.1 Hardness via polynomial interpolation
	1.2 The limits of interpolation
	1.3 The block-interpolation framework
	1.4 Applications of the framework

	2 Preliminaries
	2.1 Graph polynomials
	2.2 Multivariate polynomial interpolation
	2.3 Exponential-time complexity

	3 The Block Interpolation Framework
	3.1 Admissible Graph Polynomials
	3.2 First Reduction Step: Multivariate Interpolation
	3.3 Second Reduction Step: Weight Simulation by Gadgets

	4 Applications of the Framework
	4.1 The Unweighted Permanent
	4.2 The Matching and Independent Set Polynomials
	4.3 The Tutte Polynomial


