
ar
X

iv
:1

41
1.

68
29

v3
 [

cs
.C

C
]

 1
8

A
pr

 2
01

6

Approximately Counting Locally-Optimal Structures✩

Leslie Ann Goldberga, Rob Gyselb, John Lapinskasa,1

aDepartment of Computer Science, University of Oxford, Parks Road, OX1 3QD, UK.
bDepartment of Computer Science, University of California, 2063 Kemper Hall, One

Shields Avenue, Davis, CA 95616-8562, US.

Abstract

In general, constructing a locally-optimal structure is a little harder than con-
structing an arbitrary structure, but significantly easier than constructing a
globally-optimal structure. A similar situation arises in listing. In counting,
most problems are #P-complete, but in approximate counting we observe an
interesting reversal of the pattern. Assuming that #BIS is not equivalent to
#SAT under AP-reductions, we show that counting maximal independent sets
in bipartite graphs is harder than counting maximum independent sets. Moti-
vated by this, we show that various counting problems involving minimal sep-
arators are #SAT-hard to approximate. These problems have applications for
constructing triangulations and phylogenetic trees.

1. Introduction

A locally-optimal structure is a combinatorial structure that cannot be im-
proved by certain (greedy) local moves, even though it may not be globally
optimal. An example is a maximal independent set in a graph. It is trivial to
construct an independent set in a graph (for example, the singleton set con-
taining any vertex is an independent set). It is easy to construct a maximal
independent set (the greedy algorithm can do this). However, it is NP-hard to
construct a globally-optimal independent set, which in this case means a maxi-
mum independent set. In the setting in which we work, this situation is typical.
Constructing a locally-optimal structure is somewhat more difficult than con-
structing an arbitrary structure, and constructing a globally-optimal structure

✩The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC
grant agreement no. 334828. The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that
may be made of the information contained therein. The research leading to these results has
also received funding from the National Science Foundation, grant number IIS-1219278. A
preliminary version [16] of this paper appears in the proceedings of ICALP 2015.

Email addresses: leslie.goldberg@cs.ox.ac.uk (Leslie Ann Goldberg),
rsgysel@ucdavis.edu (Rob Gysel), john.lapinskas@cs.ox.ac.uk (John Lapinskas)

1Corresponding author.

Preprint submitted to Elsevier September 19, 2018

http://arxiv.org/abs/1411.6829v3

is more difficult than constructing a locally-optimal structure. For example, in
bipartite graphs, it is trivial to construct an independent set, easy to (greedily)
construct a maximal independent set, and more difficult to construct a maxi-
mum independent set (even though this can be done in polynomial time). This
general phenomenon has been well-studied. In 1987, Johnson, Papadimitriou
and Yannakakis [22] defined the complexity class PLS (for “polynomial-time lo-
cal search”) that captures local optimisation problems where one iteration of the
local search algorithm takes polynomial time. As the authors point out, practi-
cally all empirical evidence leads to the conclusion that finding locally-optimal
solutions is much easier than solving NP-hard problems, and this is supported
by complexity-theoretic evidence, since a problem in PLS cannot be NP-hard
unless NP=co-NP. An example that illustrates this point is the graph parti-
tioning problem. For this problem it is trivial to find a valid partition, and it
is NP-hard to find a globally-optimal (minimum weight) partition but Schäffer
and Yannakakis [27] showed that finding a locally-optimal solution (with re-
spect to a particular swapping-dynamics) is PLS-complete, so is presumably of
intermediate complexity.

For listing combinatorial structures, a similar pattern emerges. By self-
reducibility, there is a nearly-trivial polynomial-space polynomial-delay algo-
rithm for listing the independent sets of a graph [15]. A polynomial-space
polynomial-delay algorithm for listing the maximal independent sets exists, due
to Tsukiyama et al. [31], but it is more complicated. On the other hand, there
is no polynomial-space polynomial-delay algorithm for listing the maximum in-
dependent sets unless P=NP. There is a polynomial-space polynomial-delay
algorithm for listing the maximum independent sets of a bipartite graph [23],
but this is substantially more complicated than any of the previous algorithms.

When we move from constructing and listing to counting, these differences
become obscured because nearly everything is #P-complete. For example,
counting independent sets, maximal independent sets, and maximum indepen-
dent sets of a graph are all #P-complete problems, even if the graph is bipar-
tite [32]. Furthermore, even approximately counting independent sets, maxi-
mal independent sets, and maximum independent sets of a graph are all #P-
complete with respect to approximation-preserving reductions [10].

The purpose of this paper is to highlight an interesting situation that arises
in approximate counting where, contrary to the situations that we have just
discussed, approximately counting locally-optimal structures is apparently more
difficult than counting globally-optimal structures.

In order to explain the result, we first briefly summarise what is known about
the complexity of approximate counting within #P. This will be explained in
more detail in Section 2. There are three relevant complexity classes — the class
containing problems which admit a fully-polynomial randomised approximation
scheme (FPRAS), the class #RHΠ1, and #P itself. Dyer et al. [10] showed
that #BIS, the problem of counting independent sets in a bipartite graph, is
complete for #RHΠ1 with respect to approximation-preserving (AP) reductions
and that #IS, the problem of counting independent sets in a (general) graph is
#P-complete with respect to AP-reductions. It is generally believed that the

2

#RHΠ1-complete problems are not FPRASable, but that they are of interme-
diate complexity, and are not as difficult to approximate as the problems which
are #P-complete with respect to AP-reductions. Many problems have subse-
quently been shown to be #RHΠ1-complete and #P-complete with respect to
AP-reductions. More examples will be given in Section 2.

We can now describe the interesting situation which emerges with respect
to independent sets in bipartite graphs. Dyer et al. [10] showed that approxi-
mately counting independent sets and approximately counting maximum inde-
pendent sets are both #RHΠ1-complete with respect to AP-reductions. Thus,
the pattern outlined above would suggest that approximately counting maxi-
mal independent sets in bipartite graphs ought to also be #RHΠ1-complete.
However, we show (Theorem 1, below) that approximately counting maximal
independent sets in bipartite graphs is actually #P-complete with respect to
AP-reductions. Thus, either #RHΠ1 and #P are equivalent in approximation
complexity (contrary to the picture that has been emerging in earlier papers),
or this is a scenario where approximately counting locally-optimal structures is
actually more difficult than approximately counting globally-optimal ones.

Motivated by the difficulty of approximately counting maximal independent
sets in bipartite graphs, we also study the problem of approximately counting
other locally-optimal structures that arise in algorithmic applications. First, the
problem of counting the minimal separators of a graph arises in diverse appli-
cations from triangulation theory to phylogeny construction in computational
biology. A minimal separator is a particular type of vertex separator. Defi-
nitions are given in Section 1.1. Algorithmic applications arise because fixed-
parameter-tractable algorithms are known whose running time is polynomial in
the number of minimal separators of a graph. These algorithms were originally
developed by Bouchitté and Todinca [5, 6] (and improved in [11]) to exactly
solve the so-called treewidth and minimum-fill problems. The former problem,
finding the exact treewidth of a graph, is widely studied due to its applicabil-
ity to a number of other NP-complete problems [4]. The technique has recently
been generalized [14] to cover problems including treecost [2] and treelength [26].
The algorithm can also be used to find a minimum-width tree-decomposition of
a graph, a key data structure that is used to solve a variety of NP-complete
problems in polynomial time when the width of the tree-decomposition is fixed
[4]. In recent years, much research has been dedicated to exact-exponential
algorithms for treewidth [3], the fastest of which [12] has running time closely
connected to the number of minimal separators in the graph. Indeed, there exist
polynomials pL and pU such that if the graph has n vertices and M minimal
separators, then the running time is at least pL(n)M and at most pU (n)M

2.
Bouchitté and Todinca’s approach has also recently been applied to solve

the perfect phylogeny problem and two of its variants [21]. In this problem, the
input is a set of phylogenetic characters, each of which may be viewed as a
partition of a subset of species. The goal is to find a phylogenetic tree such that
every character is convex on that tree — that is, the parts of each partition
form connected subtrees that do not overlap. Such a tree is called a perfect
phylogeny.

3

In all of these applications, it would be useful to count the minimal vertex
separators of a graph, since this would give an a priori bound on the running
time of the algorithms. Thus, we consider the difficulty of this problem, whose
complexity was previously unresolved, even in terms of exact computation. The-
orem 2 shows that the problem of counting minimal separators is #P-complete,
both with respect to Turing reductions (for exact computation) and with re-
spect to AP-reductions. Thus, this problem is as difficult to approximate as
any problem in #P.

Motivated by applications to treewidth [11] and phylogeny [20, 21], we also
consider various heuristic approximations to the minimal separator problem.
The number of inclusion-minimal separators is a natural choice for a lower bound
on the number of minimal separators. Conversely, the number of (s, t)-minimal
separators, taken over all vertices s and t, is a natural choice for an upper
bound on the number of minimal separators. Theorem 2 shows that both of
these bounds are difficult to compute, either exactly or approximately. Finally,
the number and structure of 2-component minimal separators is important in
computational biology. 2-component minimal separators arise naturally in the
problem of determining whether a subset of “quartet phylogenies” can be as-
sembled uniquely [20]. Thus, we study the problem of counting such minimal
separators. Theorem 2 shows that they are complete for #P with respect to
exact and approximate computation.

Our new results about counting minimal vertex separators are obtained
by first considering the problem of counting minimal edge separators. These
locally-optimal structures are also known as bonds or minimal cuts, and are
well-studied in other contexts — see e.g. Diestel [9]. Theorem 3 gives the first
hardness result for counting these structures, either exactly or approximately.

In addition to studying maximal independent sets and minimal vertex and
edge separators, we study two other locally-optimal structures related to maxi-
mal independent sets in bipartite graphs. A maximal independent set is precisely
an independent set in a graph which is also a dominating set. Theorem 4 shows
that counting dominating sets in bipartite graphs is #P-hard with respect to
AP-reductions. It is already known to be #P-hard to compute exactly [24].
Finally, in Theorems 5 and 6 we show that maximal independent sets in bi-
partite graphs can be represented as unions of sets, so a set union problem
#SetUnions is also #P-hard with respect to AP-reductions, and so is its inverse
#UnionReps.

1.1. Detailed Results

We now give formal definitions of the problems that we study, and state our
results precisely. Note that all problems are indexed for reference at the end of
the paper. Our first result is that counting maximal independent sets in a bipar-
tite graph is #P-complete with respect to AP-reductions (even though counting
maximum independent sets in bipartite graphs is only #RHΠ1-complete with re-
spect to these reductions). For readers that are unfamiliar with AP-reductions,
details are given in Section 2.

4

Definition 1. Let G be a graph. We say that an independent set X ⊆ V (G)
of G is maximal if no proper superset of X is an independent set of G.

Problem 1. #MaximalBIS.
Input: A bipartite graph G.
Output: The number of maximal independent sets of G.

The following theorem is proved in Section 3.

Theorem 1. #MaximalBIS ≡AP #SAT.

Next we state our results relating to counting minimal separators. In the
following definitions, G = (V,E) is a graph, s and t are distinct vertices of G,
and X ⊆ V is a set of vertices.

Definition 2. X is an (s, t)-separator of G if s and t lie in different components
of G−X. If, in addition, no proper subset of X is an (s, t)-separator of G, then
we say that X is a minimal (s, t)-separator of G.

Definition 3. X is a minimal separator of G if it is a minimal (s, t)-separator
for some s, t ∈ V .

For example, let G = (V,E) be the graph defined by

V = {1, 2, 3, 4, 5}, and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 5}}.

G is a four-edge cycle with a pendant vertex. Then {1, 3} is a minimal separator
of G since it is a minimal (2, 4)-separator.

We have already seen that algorithms for counting and approximately count-
ing minimal separators are useful in algorithmic applications. There is also lots
of existing work on listing minimal separators. Given a graph G, let n be the
number of vertices and let m be the number of edges. Kloks and Kratsch,
and independently, Sheng and Liang, showed how to compute all (s, t)-minimal
separators in O(n3) time per (s, t)-minimal separator [25, 28]. Computing all
minimal separators by computing (s, t)-minimal separators for each possible
vertex pair in this way leads to an O(n5) time per minimal separator listing
algorithm. Berry, Bordat, and Cogis [1] improved this approach, computing
all minimal separators in O(n3) time per minimal separator. Each of these
algorithms require storing minimal separators in an adequate data structure.
Takata’s algorithm [30] generates the set of minimal separators in O(n3m) time
per minimal separator but linear space. A graph has at most O(1.6181n) mini-
mal separators [13]. We study the following computational problems, based on
our desire to count and to approximately count minimal separators.

Problem 2. #(s, t)-BiMinimalSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-separators of G, which we denote by
MS(G, s, t).

5

Problem 3. #BiMinimalSeps.
Input: A bipartite graph G.
Output: The number of minimal separators of G, which we denote by MS(G).

Theorem 2 below shows that both problems are #P-complete to solve exactly
and are complete for #P with respect to approximation-preserving reductions.

Motivated by applications to phylogeny [20] we also consider various heuristic
approximations to the minimal separator problem. We start by defining the
notion of an inclusion-minimal separator, since the number of these is a natural
lower bound for the number of minimal separators.

Definition 4. Let G be a graph. A minimal separator X of G is said to be an
inclusion-minimal separator if no proper subset of X is a minimal separator.

In the five-vertex example above, the minimal separator {1, 3} is not an
inclusion-minimal separator since {1} ⊂ {1, 3} is a minimal (5, 4)-separator.
However {1} is an inclusion-minimal separator. We consider the following com-
putational problem.

Problem 4. #BiInclusionMinimalSeps.
Input: A bipartite graph G.
Output: The number of inclusion-minimal separators of G, which we denote
by IMS(G).

We also consider the problem of counting 2-component minimal separators
since these arise in phylogenetic assembly.

Problem 5. #(s, t)-BiConnMinimalSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-separators X of G such that G−X has
exactly two connected components.

Problem 6. #BiConnMinimalSeps.
Input: A bipartite graph G.
Output: The number of minimal separators X of G such that G−X has exactly
two connected components.

Finally, our main theorem about minimal separators shows that all of these
problems are #P-complete and are also complete for #P with respect to AP-
reductions.

Theorem 2. The problems #(s, t)-BiMinimalSeps, #BiMinimalSeps, #(s, t)-
BiConnMinimalSeps, #BiConnMinimalSeps and #BiInclusionMinimalSeps are
#P-complete and are equivalent to #SAT under AP-reduction.

Theorem 2 is proved in Section 4. In order to prove it, we first study al-
gorithmic problems related to other natural locally-optimal structures, namely
minimal edge-separators. These problems are interesting for their own sake,
but they are also used in the proof of Theorem 2. In the following definitions,
G = (V,E) is again a graph, and s and t are distinct vertices of G. F ⊆ E is a
set of edges of G.

6

Definition 5. F is an (s, t)-edge separator of G if s and t lie in different
components of G − F . If in addition no proper subset of F is an (s, t)-edge
separator of G then we say that F is a minimal (s, t)-edge separator of G.

Definition 6. F is a minimal edge separator of G if it is a minimal (s, t)-edge
separator for some s, t ∈ V .

As the following proposition shows, there is no need to define inclusion-
minimal edge separators, since these would be the same as minimal edge sepa-
rators.

Proposition 7. Let G = (V,E) be a connected graph. An edge separator F ⊆ E
of G is minimal if and only if no proper subset of F is an edge separator of G.

Proof. This is immediate from a slightly more general proposition, Proposi-
tion 12, which in turn is a result of Whitney [33].

We study the following problems, showing that they are both #P-complete
with respect to AP-reductions and #P-complete to compute exactly.

Problem 7. #(s, t)-BiMinimalEdgeSeps.
Input: A bipartite graph G and two vertices s, t ∈ V (G).
Output: The number of minimal (s, t)-edge separators of G, which we denote
by MES(G, s, t).

Problem 8. #BiMinimalEdgeSeps.
Input: A bipartite graph G.
Output: The number of minimal edge separators of G, which we denote by
MES(G).

Theorem 3. The problems #BiMinimalEdgeSeps and #(s, t)-BiMinimalEdge-
Seps are #P-complete and are equivalent to #SAT under AP-reduction.

In addition to studying maximal independent sets and minimal vertex and
edge separators, we study two other structures related to maximal independent
sets in bipartite graphs.

Definition 8. Let G be a graph. We say that a set X ⊆ V (G) is a dominating
set in G if every vertex in V (G) \X sends an edge into X.

We consider the following computational problem.

Problem 9. #BiDomSets.
Input: A bipartite graph G.
Output: The number of dominating sets in G.

It is already known [24] that exactly counting dominating sets in bipartite
graphs is #P-complete. We show that that approximately counting them is also
complete for #P with respect to AP-reductions.

Theorem 4. #BiDomSets ≡AP #SAT.

7

Finally, we show that maximal independent sets in bipartite graphs can be
represented as unions of sets, so a natural set union problem is also #P-hard
with respect to AP-reductions, and so is its inverse. To describe the problem,
we use the following notation. Throughout the paper, we write N for the set
{1, 2, . . .} of natural numbers. For all n ∈ N, we write [n] = {1, 2, . . . , n}.

Definition 9. Let F ⊆ 2[n]. We define ∪F =
⋃

F∈F F , U(F) = {∪F ′ | F ′ ⊆

F}, and U−1
F (F) = {F ′ ⊆ F | ∪F ′ = F}.

For example, taking F = {{1}, {1, 2}, {3, 4}}, we have

∪F = [4],

U(F) = {{1}, {1, 2}, {3, 4}, {1, 3, 4}, {1, 2, 3, 4}},

U−1
F ([4]) = {{{1, 2}, {3, 4}}, {{1}, {1, 2}, {3, 4}}}.

Note in particular that we may have U−1
F (F) = ∅.

The following theorems are proved in Section 5.

Problem 10. #SetUnions.
Input: An integer n ∈ N and a family of sets F ⊆ 2[n].
Output: |U(F)|.

Theorem 5. #SetUnions ≡AP #SAT.

Note that the connection between the two problems driving Theorem 5 was
already known in the context of the union-closed sets conjecture — see Bruhn,
Charbit, Schaudt and Telle [7]. We give an explicit proof for clarity.

Problem 11. #UnionReps.
Input: An integer n ∈ N and a family of sets F ⊆ 2[n].
Output: |U−1

F ([n])|.

Theorem 6. #UnionReps ≡AP #SAT.

2. Preliminaries

Let X and Y be sets. Then we write X ⊆ Y if X is a subset of Y , and
X ⊂ Y if X is a proper subset of Y . We write 2X for the power set of X . For
t ∈ N, we write X(t) for the set of subsets of X of cardinality t.

Let X and Y be multisets. We write X ⊎ Y for the disjoint union of X and
Y . We also adopt the convention that elements of a multiset with the same
name are nevertheless distinguishable.

We require our graphs to be simple, i.e. to have no loops or multiple edges.
We require our multigraphs to have no loops. Let G = (V,E) be a multigraph.
For all v ∈ V , we write N(v) = {w ∈ V : {v, w} ∈ E}. For all S ⊆ V , we write
N(S) =

⋃

v∈S N(v). We define the underlying graph of G to be the graph with
vertex set V and edge set {e : e ∈ E}.

8

Let G = (V,E) be a graph. If F ⊆ E, we write G−F for the graph (V,E\F).
If X ⊆ V , we write G−X for the graph G[V \X] induced by G on V \X .

The following definitions are standard in the field, and have been taken
largely from [19]. We require our problem inputs to be given as finite binary
strings, and write Σ∗ for the set of all such strings. A randomised approximation
scheme is an algorithm for approximately computing the value of a function
f : Σ∗ → N. The approximation scheme has a parameter ε ∈ (0, 1) which
specifies the error tolerance. A randomised approximation scheme for f is a
randomised algorithm that takes as input an instance x ∈ Σ∗ (e.g. an encoding
of the graph G in an instance of #MaximalBIS) and a rational error tolerance
ε ∈ (0, 1), and outputs a rational number z (a random variable depending
on the “coin tosses” made by the algorithm) such that, for every instance x,
P(e−εf(x) ≤ z ≤ eεf(x)) ≥ 3

4 . The randomised approximation scheme is said
to be a fully polynomial randomised approximation scheme, or FPRAS, if it runs
in time bounded by a polynomial in |x| and ε−1.

Our main tool for understanding the relative difficulty of approximation
counting problems is approximation-preserving reductions. We use the notion
of AP-reduction from Dyer et al. [10]. Suppose that f and g are functions from
Σ∗ to N. An AP-reduction from f to g gives a way to turn an FPRAS for g
into an FPRAS for f . An approximation-preserving reduction or AP-reduction
from f to g is a randomised algorithm A for computing f using an oracle for
g. The algorithm A takes as input a pair (x, ε) ∈ Σ∗ × (0, 1), and satisfies
the following three conditions: (i) every oracle call made by A is of the form
(w, δ), where w ∈ Σ∗ is an instance of g, and δ ∈ (0, 1) is an error bound
satisfying δ−1 ≤ poly(|x|, ε−1); (ii) the algorithm A meets the specification for
being a randomised approximation scheme for f (as described above) whenever
the oracle meets the specification for being a randomised approximation scheme
for g; and (iii) the run-time of A is polynomial in |x| and ε−1 and the bit-size
of the values returned by the oracle.

If an AP-reduction from f to g exists we write f ≤AP g, and say that
f is AP-reducible to g. Note that if f ≤AP g and g has an FPRAS then
f has an FPRAS. (The definition of AP-reduction was chosen to make this
true.) If f ≤AP g and g ≤AP f then we say that f and g are equivalent
under AP-reduction, and write f ≡AP g. A word of warning about terminology:
the notation ≤AP has been used (see e.g. [8]) to denote a different type of
approximation-preserving reduction which applies to optimisation problems. We
will not study optimisation problems in this paper, so hopefully this will not
cause confusion.

Dyer et al. [10] studied counting problems in #P and identified three classes
of counting problems that are interreducible under AP-reductions. The first
class, containing the problems that have an FPRAS, are trivially equivalent
under AP-reduction since all the work can be embedded into the reduction
(which declines to use the oracle). The second class is the set of problems that
are equivalent to #SAT, the problem of counting satisfying assignments to a
Boolean formula in CNF, under AP-reduction. These problems are complete
for #P with respect to AP-reductions. Zuckerman [34] has shown that #SAT

9

cannot have an FPRAS unless RP = NP. The same is obviously true of any
problem to which #SAT is AP-reducible.

The third class appears to be of intermediate complexity. It contains all
of the counting problems expressible in a certain logically-defined complexity
class, #RHΠ1. Typical complete problems include counting the downsets in a
partially ordered set [10], computing the partition function of the ferromagnetic
Ising model with local external magnetic fields [17], and counting the indepen-
dent sets in a bipartite graph, which is formally defined as follows.

Problem 12. #BIS.
Input: A bipartite graph G.
Output: The number of independent sets in G, which we denote by IS(G).

In [10] it was shown that #BIS is complete for the logically-defined com-
plexity class #RHΠ1 with respect to AP-reductions. Goldberg and Jerrum [18]
have conjectured that there is no FPRAS for #BIS. Early indications point to
the fact that it may be of intermediate complexity, between the FPRASable
problems and those that are complete for #P with respect to AP-reductions.

3. Hardness of #MaximalBIS

We first prove that #MaximalBIS is complete for #P with respect to AP-
reductions. We reduce from the well-known problem of counting independent
sets in an arbitrary graph.

Problem 13. #IS.
Input: A graph G.
Output: The number of independent sets in G.

Note that #IS is complete for #P with respect to AP-reductions — in-
deed, the following appears as Theorem 3 of Dyer, Goldberg, Greenhill and
Jerrum [10].

Theorem 7. (DGGJ) #IS ≡AP #SAT.

We can now prove Theorem 1.

Theorem 1. #MaximalBIS ≡AP #SAT.

Proof. Since #MaximalBIS is in #P, #MaximalBIS ≤AP #SAT follows from
[10]. To go the other direction, we will show #IS ≤AP #MaximalBIS. Let
MIS(G) denote the number of maximal independent sets in a graph G. Let
G = (V,E) be an instance of #IS. Without loss of generality let V = [n] for
some n ∈ N, let m = |E|, and let t = n+ 2. We shall construct an instance G′

of #MaximalBIS with the property that IS(G) ≤ MIS(G′)/2tm ≤ IS(G) + 1
4 ,

which will be sufficient for the reduction. See Figure 1 for an example.
Informally, we obtain a bipartite graph G′ (an instance of #MaximalBIS)

from G by first t-thickening and then 4-stretching each of G’s edges and by also

10

1 2

34

1 2

34

v1 v2

v3v4

G G′

Figure 1: An example of the reduction from an instance G of #IS to an instance G′ of
#MaximalBIS used in the proof of Theorem 1. The boxes around vertices indicate a non-
maximal independent set in G and one of its maximal counterparts in G′. Note in particular
how the presence of v4 ensures that vertex 4 has an occupied neighbour in G′.

adding a bristle to each of G’s vertices. Formally, we define G′ as follows. For
each e ∈ E let Xe, Ye and Ze be sets of t vertices. We require all of these
sets to be disjoint from each other and from [n]. Write Xe = {xk

e | k ∈ [t]},
Ye = {yke | k ∈ [t]}, and Ze = {zke | k ∈ [t]}. Also, let W =

⋃

e∈E Xe ∪ Ye ∪ Ze.
Let V ∗ = {v1, . . . , vn} be a set of distinct vertices which is disjoint from [n]∪W .
Then we define

V (G′) = [n] ∪ V ∗ ∪W,

E(G′) = {{i, vi} | i ∈ [n]} ∪
⋃

e={i,j}∈E
i<j
k∈[t]

{{i, xk
e}, {x

k
e , y

k
e }, {y

k
e , z

k
e }, {z

k
e , j}}.

Let S ⊆ [n] be an arbitrary set. We shall determine the number MISS(G
′)

of maximal independent sets T ⊆ V (G′) with T ∩ [n] = S, and thereby bound
MIS(G′).

First, note that for every S ⊆ [n], the set S ∪ {vi ∈ V ∗ | i 6∈ S} ∪
⋃

e Ye

is a maximal independent set of G′, so MISS(G
′) is non-zero. Also, if T is a

maximal independent set of G′ and T ∩ [n] = S then T ∩V ∗ = {vi ∈ V ∗ | i 6∈ S}.
In particular, this implies that every unoccupied vertex in [n] has an occupied
neighbour in V ∗.

Consider an edge e = {i, j} ∈ E, where i < j, and a value k ∈ [t]. If T is a
maximal independent set of G′ containing both i and j then T ∩ {xk

e , y
k
e , z

k
e } =

11

{yke}. On the other hand, if T is a maximal independent set of G′ containing i
but not j then T ∩ {xk

e , y
k
e , z

k
e } can either be {yke} or {zke}. This choice can be

made independently for each k ∈ [t]. Similarly, if T is a maximal independent
set of G′ containing neither of i and j then T∩{xk

e , y
k
e , z

k
e } can either be {xk

e , z
k
e },

or {yke}.
Given S ⊆ [n], let µ(S) be the number of edges ofG with both endpoints in S.

We conclude from the previous observations that MISS(G
′) = 2(m−µ(S))t so

MIS(G′) =
∑

S⊆[n] 2
(m−µ(S))t. Since each independent set S of G has µ(S) = 0,

MIS(G′) ≥ IS(G)2mt. Furthermore, since there are at most 2n sets S ⊆ [n] that
are not independent sets of G, and each of these has µ(S) ≥ 1, we have

IS(G) ≤
MIS(G′)

2tm
≤ IS(G) + 2n2−t = IS(G) +

1

4
. (1)

Equation (1) implies that there is an AP-reduction from #IS to #MaximalBIS.
The details of the reduction showing how to tune the accuracy parameter in
the oracle call for approximating MIS(G′) in order to get a sufficiently good
approximation to IS(G) are exactly as in the proof of Theorem 3 of [10].

4. Minimal separator problems

4.1. Two intermediate problems

In this section, we shall present hardness proofs for two intermediate prob-
lems. We will then subsequently use these problems as reduction targets in our
proofs of Theorems 2 and 3. We first explicitly generalise Definitions 5 and 6
to multigraphs in the natural way. We avoided doing so in the introduction be-
cause the graph separator problems that we have previously defined are trivially
equivalent to their multigraph variants — we will only use these definitions for
intermediate problems.

Definition 10. Let G = (V,E) be a multigraph, and let s, t ∈ V (G). A multiset
F ⊆ E is an (s, t)-edge separator of G if s and t lie in different components of
G−F . We say F is a minimal (s, t)-edge separator if no proper submultiset of
F is an (s, t)-edge separator, and write MES(G, s, t) for the number of minimal
(s, t)-edge separators of G.

Definition 11. Let G = (V,E) be a multigraph, and let F ⊆ E. We say F is a
minimal edge separator if it is a minimal (s, t)-edge separator for some s, t ∈ V ,
and write MES(G) for the number of minimal edge separators of G.

We now define our two intermediate problems.

Problem 14. #LargeMinimalEdgeSeps.
Input: A multigraph G and the maximum cardinality x of any minimal edge
separator in G.
Output: The number of minimal edge separators of G with maximum cardinal-
ity, which we denote by LMES(G).

12

Problem 15. #(s, t)-LargeMinimalEdgeSeps.
Input: A multigraph G, two distinct vertices s, t ∈ V , and the maximum car-
dinality y of any minimal (s, t)-edge separator in G.
Output: The number of minimal (s, t)-edge separators of G with maximum
cardinality, which we denote by LMES(G, s, t).

Note that the input restrictions in the definitions of #LargeMinimalEdge-
Seps and #(s, t)-LargeMinimalEdgeSeps are motivated purely by their uses as
intermediate problems in reductions. When we use them, we will be able to
prove that their respective promises are satisfied. As the next proposition shows,
both #LargeMinimalEdgeSeps and #(s, t)-LargeMinimalEdgeSeps can be ex-
pressed in terms of vertex cuts. It is a widely known result and was first proved
by Whitney [33] — we give a proof here for completeness.

Proposition 12. Let G = (V,E) be a connected multigraph. Then a multiset
F ⊆ E is a minimal edge separator of G if and only if G − F has exactly two
non-empty components, and F is the multiset of edges between them.

Proof. For any non-empty set S ⊂ V such that G[S] and G[V \S] are connected,
taking an arbitrary s ∈ S and t ∈ V \ S, it is immediate that the multiset of
edges between S and V \S is a minimal (s, t)-edge separator and hence a minimal
edge separator.

Conversely, let F ⊆ E(G) be a minimal (s, t)-edge separator for some s, t ∈
V . Suppose G−F has (at least) three components C1, C2 and C3. Without loss
of generality, suppose s ∈ C1 and t ∈ C2. Then since G is connected, F must
contain an edge e from C1 ∪ C2 to C3. But then F \ {e} is still an (s, t)-edge
separator, contradicting minimality. Hence G−F has only two components, as
required.

Thus we may view counting maximum minimal edge separators as count-
ing maximum vertex cuts subject to the requirement that each part of the
vertex cut is connected. We shall therefore prove hardness for #LargeMinimal-
EdgeSeps and #(s, t)-LargeMinimalEdgeSeps by adapting a folklore proof that
MAX-CUT is NP-complete (see e.g. Exercise 7.25 of Sipser [29]). The original
proof works by reduction from 3-NAE-SAT – we shall instead reduce from the
following variant of the problem.

Definition 13. We define NAE to be a logical clause as follows. Let x1, x2

and x3 be literals, and let σ : {x1, x2, x3} → {0, 1} be a truth assignment. Then
under σ,

NAE(x1, x2, x3) =

{

0 if σ(x1) = σ(x2) = σ(x3)

1 otherwise.

Definition 14. We define a monotone 3-NAE formula φ to be any logical
formula of the form

∧

i∈[k] Ci, where k ∈ N and C1, . . . , Ck are NAE clauses
containing three distinct and un-negated literals, e.g. three distinct variables.

13

Problem 16. #MonotonePromise-3-NAE-SAT.
Input: A satisfiable monotone 3-NAE formula φ.
Output: The number of satisfying assignments of φ.

We first prove hardness for #MonotonePromise-3-NAE-SAT by reduction
from #IS.

Lemma 15. #MonotonePromise-3-NAE-SAT is #SAT-hard to approximate
and is #P-complete.

Proof. For every instance φ of #MonotonePromise-3-NAE-SAT, let SAT(φ) be
the number of satisfying assignments of φ. Since #MonotonePromise-3-NAE-
SAT is in #P, we have #MonotonePromise-3-NAE-SAT ≤AP #SAT by [10].
Let G = (V,E) be an instance of #IS, which is hard by Theorem 7. We shall
construct an instance φ of #MonotonePromise-3-NAE-SAT with the property
that SAT(φ) = 2 · IS(G), from which the result follows immediately.

We identify V with a set of logical variables. Let x be a new variable distinct
from the variables in V . Then we define

φ =
∧

{i,j}∈E

NAE(i, j, x).

Note that φ is satisfiable by setting x to 1 and all other variables to 0, so φ is
an instance of #MonotonePromise-3-NAE-SAT.

Suppose σ : V ∪ {x} → {0, 1} is a satisfying assignment of φ. Then we may
define an independent set S as follows.

S = {v ∈ V | σ(v) = σ(x)}.

Since σ is a satisfying assignment, we cannot have σ(i) = σ(j) = σ(x) for any
{i, j} ∈ E, and so S is an independent set.

Conversely, suppose S is an independent set of G and let 1S be the indicator
function of S. Then S corresponds to two satisfying assignments σ0, σ1 : V ∪
{x} → {0, 1} of φ. Indeed, let σ1(x) = 1, and let σ1(v) = 1S(v) for all v ∈ V .
Then σ1 satisfies every clause NAE(i, j, x) of φ, since σ1(x) = 1 and at most one
of i and j lies in S. We then define σ0 = 1−σ1, which is a satisfying assigmnent
since σ1 is a satisfying assignment.

Thus each satisfying assignment of φ corresponds to a unique independent
set of G, and each independent set of G corresponds to exactly two satisfying
assignments of φ. The result therefore follows.

We now reduce #MonotonePromise-3-NAE-SAT to #LargeMinimalEdge-
Seps and #(s, t)-LargeMinimalEdgeSeps.

Lemma 16. #LargeMinimalEdgeSeps and #(s, t)-LargeMinimalEdgeSeps are
#SAT-hard to approximate and are #P-complete.

14

NAE(x1,x2,x3) ∧NAE(x3,x4,x5)

1 1 0 0 1 0
0 0 1 1 0 1

σS :
σS :

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

S

S

φ G

Figure 2: An example of the reduction from an instance φ of #MonotonePromise-3-NAE-SAT
to an instance (G, k) of #LargeMinimalEdgeSeps used in the proof of Lemma 16. The thin
blue edges of G are elements of F1, the thick red edges are elements of F2, and the very thick
grey edges are elements of F3. In this example we have k = 5+ 4+ 5 · 5 = 34, and a minimal
edge separator is maximum if and only if it contains all edges of F1 and 4 edges of F2.

Proof. Since #LargeMinimalEdgeSeps and #(s, t)-LargeMinimalEdgeSeps are
in #P, it follows that #LargeMinimalEdgeSeps ≤AP #SAT and #(s, t)-Large-
MinimalEdgeSeps ≤AP #SAT by [10]. We will first prove the result for #Large-
MinimalEdgeSeps. Let φ be an instance of #MonotonePromise-3-NAE-SAT,
which is hard by Lemma 15. Let x1, . . . , xn be the variables of φ, and let
C1, . . . , Cm be the clauses of φ. We shall construct an instance (G, k) of #Large-
MinimalEdgeSeps with the property that SAT(φ) = 2 · LMES(G), from which
the result follows immediately. See Figure 2 for an example.

We define G = (V,E) as follows. Let

V = {xi | i ∈ [n]} ∪ {xi | i ∈ [n]}.

Let Ci ⊆ V be the set of variables appearing in clause Ci. We now define sets
of edges

F1 = {{xi, xi} | i ∈ [n]},

F2 =
⊎

i∈[m]

C
(2)
i ,

F3 = V (2).

We then define E = F1 ⊎ F2 ⊎ F3. Finally, let k = n+ 2m+ n2.
Suppose that F is a minimal edge separator of G. By Proposition 12, G−F

has exactly two components S and V \S. We claim that |F | ≤ k, with equality
if and only if the following properties hold.

(i) For all i ∈ [n], |{xi, xi} ∩ S| = 1.

(ii) For all i ∈ [m], |F ∩ C
(2)
i | = 2.

First, note that |F ∩ F1| ≤ n with equality if and only if (i) holds. Second,

note that for all i ∈ [m], we have |F ∩ C
(2)
i | ≤ 2 with equality for all i if and

15

only if (ii) holds. Finally, note that

|F ∩ F3| = |S|(2n− |S|) = n2 − (n− |S|)2 ≤ n2

with equality if and only if |S| = n (which is implied by (i)). Hence

|F | = |F ∩ F1|+
∑

i∈[m]

|F ∩ C
(2)
i |+ |F ∩ F3| ≤ k,

with equality if and only if (i) and (ii) hold. We will soon see that satisfying
assignments of φ correspond to minimal edge separators satisfying (i) and (ii).
Since φ is satisfiable, this will imply in particular that (G, k) is an instance of
#LargeMinimalEdgeSeps.

We now define a two-to-one correspondence between satisfying assignments
of φ and minimal edge separators of G of cardinality k. Given a satisfying
assignment σ : {x1, . . . , xn} → {0, 1}, let S = {xi | σ(xi) = 1}∪{xi | σ(xi) = 0}
and let f(σ) be the multiset of edges from S to V \ S. Note that since G
contains a spanning clique it is immediate that f(σ) is a minimal (x1, x1)-
edge separator, and hence a minimal edge separator. Moreover, since σ is a
satisfying assignment, f(σ) satisfies (i) and (ii) and therefore has cardinality k.
It is immediate that f is a two-to-one map, with f(σ) = f(1 − σ). It remains
only to prove that f is surjective.

Let F be a minimal edge separator ofG of cardinality k, let S be a component
of G− F , and let σS : {x1, . . . , xn} → {0, 1} be given by

σS(xi) =

{

1 if xi ∈ S,

0 if xi ∈ S.

By property (i), σS is well-defined. Let Ci be a clause of φ. Then Ci ∩ S is the
set of literals in Ci which are true under σS , and so σS satisfies Ci by property
(ii). Hence σS is a satisfying assignment of φ, and so SAT(φ) = 2 ·LMES(G) as
required.

Note that any maximum minimal edge separator in G is a maximum min-
imal (x1, x1)-edge separator and vice versa, and so we also have SAT(φ) =
2 ·LMES(G, x1, x1). The result therefore follows for #(s, t)-LargeMinimalEdge-
Seps as well.

4.2. Hardness of minimal separator problems

The remaining reductions necessary to prove Theorems 2 and 3 are all quite
similar. For convenience, we combine them into the following two lemmas. The
first lemma will be used to prove Theorem 3.

Lemma 17. Let G = (V,E) be a connected multigraph, writing n = |V | and
m = |E|. Suppose (G, x) is an instance of #LargeMinimalEdgeSeps, and
(G, s, t, y) is an instance of #(s, t)-LargeMinimalEdgeSeps. Let k = ⌈m +
log2(m) + 10⌉. Then there exists a graph G′ such that the following properties
hold.

16

(i) G′ is bipartite, V ⊆ V (G′), and |V (G′)| ≤ |E|k + |V |.
(ii) LMES(G) ≤ MES(G′)/2kx ≤ LMES(G) + 1

4 .

(iii) LMES(G, s, t) ≤ MES(G′, s, t)/2ky ≤ LMES(G, s, t) + 1
4 .

Proof. Informally, we form G′ by first k-thickening and then 2-stretching each
edge of G. Formally, we define G′ as follows. For each e ∈ E let Xe be a
set of k vertices, disjoint from V , where Xe ∩ Xf = ∅ whenever e 6= f . Let
X =

⋃

e∈E Xe. Then we define

V (G′) = V ∪X,

E(G′) =
⋃

e={u,v}∈E

{{u,w}, {w, v} | w ∈ Xe}.

Thus G′ satisfies property (i). For each e = {u, v} ∈ E, let P e
1 , . . . , P

e
k be the

internally vertex-disjoint paths in G′ of the form uwv with w ∈ Xe.
We say a minimal edge separator F ′ of G′ is good if it is not of the form

E(P e
i) for some e ∈ E, i ∈ [k]. Note that every good minimal edge separator

F ′ of G′ satisfies the following properties.

(a) |F ′ ∩ E(P e
i)| ≤ 1 for all e ∈ E, i ∈ [k].

(b) If |F ′ ∩ E(P e
i)| = 1 for some e ∈ E, i ∈ [k], then |F ′ ∩ E(P e

j)| = 1 for all
j ∈ [k].

For a good minimal edge separator F ′ of G′, write

π(F ′) = {e ∈ E | F ′ ∩ E(P e
i) 6= ∅ for some i ∈ [k]}.

We say that a minimal edge separator F of G corresponds to a good minimal
edge separator F ′ ofG′ when F = π(F ′). By properties (a) and (b), any minimal
edge separator F ofG corresponds to exactly 2k|F | good minimal edge separators
of G′. Conversely, any good minimal edge separator of G′ corresponds to a single
minimal edge separator of G. Finally, there are exactly mk non-good minimal
edge separators of G′. Hence, writing MESi(G) for the number of minimal edge
separators of G with cardinality i, we have

MES(G′) =

x
∑

i=1

MESi(G) · 2ki +mk.

It follows immediately that MES(G′)/2kx ≥ LMES(G). Moreover, we have

MES(G′)/2kx = LMES(G) +

x−1
∑

i=1

MESi(G) · 2k(i−x) +mk · 2−kx

≤ LMES(G) +m · 2m · 2−k + k2 · 2−k

≤ LMES(G) +
1

8
+

1

8
= LMES(G) +

1

4
.

(In the penultimate inequality, we use the fact that G is connected and so x ≥ 1.
In the final inequality, we use the fact that k ≥ 10 and hence k2 · 2−k ≤ 1/8.)

17

Hence G′ satisfies property (ii). Moreover, minimal (s, t)-edge separators of G
correspond only to good minimal (s, t)-edge separators of G′ and vice versa, and
so G′ satisfies property (iii) by the same argument.

We can now prove Theorem 3.

Theorem 3. The problems #BiMinimalEdgeSeps and #(s, t)-BiMinimalEdge-
Seps are #P-complete and are equivalent to #SAT under AP-reduction.

Proof. Both problems are in #P, and hence AP-reducible to #SAT by [10]. As
in the proof of Theorem 1, Lemma 17 implies that

#LargeMinimalEdgeSeps ≤AP #BiMinimalEdgeSeps,

#(s, t)-LargeMinimalEdgeSeps ≤AP #(s, t)-BiMinimalEdgeSeps.

Moreover, since LMES(G) and LMES(G, s, t) are integers for all G, s and t,
Lemma 17 also yields exact Turing reductions. The result therefore follows by
Lemma 16.

The second lemma will be used to prove Theorem 2.

Lemma 18. Let G = (V,E) be a connected multigraph, writing n = |V | and
m = |E|. Suppose (G, x) is an instance of #LargeMinimalEdgeSeps, and
(G, s, t, y) is an instance of #(s, t)-LargeMinimalEdgeSeps. Let k = ⌈m+ n+
log3(n

2) + 16⌉. Then there exists a graph G′ such that the following properties
hold.

(i) G′ is bipartite, V ⊆ V (G′), and |V (G′)| ≤ 3|E|k + |V |.

(ii) LMES(G) ≤ MS(G′)/3kx ≤ LMES(G) + 1
4 .

(iii) LMES(G, s, t) ≤ MS(G′, s, t)/3ky ≤ LMES(G, s, t) + 1
4 .

(iv) LMES(G) ≤ IMS(G′)/3kx ≤ LMES(G) + 1
4 .

Proof. Informally, we form G′ by first k-thickening and then 4-stretching each
edge of G. Formally, for each e ∈ E, let Xe, Y e and Ze be sets of k vertices.
We require all of these sets to be disjoint from each other and from V . For
each e ∈ E, write Xe = {xe

1, . . . , x
e
k}, Y

e = {ye1, . . . , y
e
k} and Ze = {ze1, . . . , z

e
k}.

Write W e = Xe ∪ Y e ∪ Ze, and W =
⋃

e∈E W e. Arbitrarily labelling e’s
endpoints as u and v, for each i ∈ [k] let P e

i be the path uxe
iy

e
i z

e
i v. Thus the

paths P e
1 , . . . , P

e
k are k internally vertex-disjoint paths of length 4 between e’s

endpoints with V (P e
i) = {u, xe

i , y
e
i , z

e
i , v}. Then we define

V (G′) = V ∪W,

E(G′) =
⋃

e∈E
i∈[k]

E(P e
i).

It is immediate that G′ satisfies property (i).
We will be able to associate minimal separators of G′ with minimal edge

separators of G in much the same way as in the proof of Lemma 17, but the

18

correspondence will be messier since a minimal separator of G′ may contain
vertices of V . Indeed, there may be exponentially many such separators in k.

We define our correspondence as follows. If X is a minimal separator of G′,
we write

π(X) = {e ∈ E | X ∩W e 6= ∅}.

We say a minimal separator X of G′ is z-good, where z ∈ N, if it satisfies the
following conditions.

(a) We have |X ∩ V (P e
i)| ≤ 1 for all e ∈ E, i ∈ [k].

(b) Whenever |X ∩ V (P e
i)| = 1 for some e ∈ E and i ∈ [k], we have |X ∩

V (P e
j)| = 1 for all j ∈ [k].

(c) We have X ∩ V = ∅.

(d) We have |π(X)| = z.

We say that X is good if it is z-good for some z ∈ N.

Claim 1. All but at most 3kx/4 minimal separators of G′ are x-good, and all
but at most 3ky/4 minimal (s, t)-separators of G′ are y-good.

We shall defer the proof of Claim 1 for the moment. We say that each good
minimal separator X of G′ corresponds to the multiset π(X) ⊆ E. Note that
any minimal edge separator F of G corresponds to exactly 3k|F | good minimal
separators of G′, all of which are |F |-good by the definition of z-goodness.
Conversely each z-good minimal separator of G′ corresponds to a single multiset
F ⊆ E, which is a minimal edge separator of G with cardinality z. Hence by
Claim 1,

LMES(G) · 3kx ≤ MS(G′) ≤ LMES(G) · 3kx +
3kx

4
.

Hence (ii) is satisfied. Moreover, good minimal (s, t)-separators ofG′ correspond
to minimal (s, t)-edge separators of G and vice versa, so (iii) is likewise satisfied
by Claim 1.

Finally, we claim that the following holds.

Every good minimal separator X of G′ separates G′ −X
into exactly two components.

(2)

Indeed, π(X) is a minimal edge separator of G, and so by Proposition 12 G −
π(X) has exactly two components. Since X is good, it follows that G′ −X has
exactly two components also. Hence (2) holds. In particular, this implies that
every good minimal separator of G′ is inclusion-minimal, and so (iv) is satisfied.

It remains only to prove Claim 1. We shall first prove that most minimal
separators of G′ are minimal (b, c)-separators for some b, c ∈ V (see Subclaim 1).
We shall then prove that most such minimal separatorsX of G′ maximise |π(X)|
(see Subclaim 2). Finally, we shall prove that if X does maximise |π(X)| then
X is good (see Subclaim 3). The first part of Claim 1 will therefore follow easily.
Moreover, Subclaims 2 and 3 will imply the second part of Claim 1 in a similar
fashion.

19

Subclaim 1. There are at most 25mk minimal separators in G′ which are not
minimal (b, c)-separators for some b, c ∈ V .

Proof of Subclaim 1: Let X be a minimal (b, c)-separator in G′ for some
b, c ∈ V (G′). We say X is trivial if X ⊆ V (P e

i) for some e ∈ E, i ∈ [k]. We
claim that if X is not a (b′, c′)-separator for some b′, c′ ∈ V then X is trivial,
from which the result follows.

Suppose without loss of generality that b is an internal vertex of P e
i for some

e ∈ E, i ∈ [k]. Suppose that the component of G′−X containing b is a subset of
W e. Then X∩V (P e

i) is already a (b, c)-separator, and so by minimality we have
X ⊆ V (P e

i). Hence X is trivial. We may therefore assume that the component
of G′ −X containing b also contains some endpoint b′ ∈ V of e.

If c ∈ V then X is a minimal (b′, c)-separator and we are done. If c is an

internal vertex of V (P f
j) for some f ∈ E, j ∈ [k], then by the same argument

either X is trivial or there exists c′ ∈ V such that c′ and c lie in the same
component of G′ −X . Thus X is either trivial or a minimal (b′, c′)-separator,
as required. We have therefore proved Subclaim 1.

Subclaim 2. Let a ∈ N, and let b, c ∈ V be distinct. There are at most
2m+n3k(a−1) minimal (b, c)-separators X of G′ with |π(X)| < a.

Proof of Subclaim 2: We may choose any minimal (b, c)-separatorX of G′ by
choosing first X ∩ V , then π(X), then X ∩W e for each e ∈ π(X). There are at
most 2n ways of choosingX∩V and at most 2m ways of choosing π(X). For each
e ∈ π(X), since b, c ∈ V , X must contain exactly one vertex internal to each
P e
i and so there are exactly 3k ways of choosing X ∩W e. Since |π(X)| ≤ a− 1,

Subclaim 2 follows.

Subclaim 3. Let b, c ∈ V be distinct, and let z be the maximum cardinality of
any minimal (b, c)-edge separator of G. If X is a minimal (b, c)-separator of G′

with |π(X)| ≥ z, then X is z-good.

Proof of Subclaim 3: Note that since b, c ∈ V , if X ∩W e 6= ∅ for some e ∈ E
then |X ∩ {xe

i , y
e
i , z

e
i }| = 1 for all i ∈ [k]. In particular, if X satisfies (c) then X

satisfies (a) and (b). To prove that X satisfies (c) and (d), we shall exhibit a
minimal (b, c)-edge separator F of G with cardinality at least |π(X)|+ |X ∩ V |.
Thus (c) and (d) will follow from the definition of z and the fact that |π(X)| ≥ z.
See Figure 3 for an example.

We say a pair (Y,D) with Y ⊆ V and D ⊆ E is a hybrid minimal (b, c)-
separator of G if it satisfies the following properties.

(P1) b and c lie in separate components of (G−D)− Y .

(P2) For all Y ′ ⊂ Y , b and c lie in the same component of (G−D)− Y ′.

(P3) For all D′ ⊂ D, b and c lie in the same component of (G−D′)− Y .

Thus (X ∩ V, π(X)) is a hybrid minimal (b, c)-separator of G, since X is a
minimal (b, c)-separator of G′.

Let C be the component of (G − π(X)) − (X ∩ V) containing b. For each
v ∈ X ∩ V , let Fv ⊆ E be the multiset of edges between v and C in G. Let

20

c

u

v

b

Fu

FvC

Figure 3: An example of the minimal (b, c)-edge separator F of G formed in the proof of
Subclaim 3. The grey vertices and edges are elements of the hybrid minimal (b, c)-separator
of G corresponding to X. Thus F consists of the grey edges of G together with the edges in
Fu and Fv.

F = π(X) ∪
⋃

v∈X∩V Fv. We claim that F is the required minimal (b, c)-edge
separator of G.

Note that Fu ∩ Fv = ∅ for all distinct u, v ∈ X ∩ V . For all v ∈ X ∩ V ,
we must have Fv 6= ∅ or (P2) would be violated on taking Y ′ = (X ∩ V) \ {v}.
Moreover, we must have Fv ∩ π(X) = ∅ or (P3) would be violated on taking
D′ = π(X) \ Fv. Hence |F | ≥ |π(X)|+ |X ∩ V | as required.

It is immediate from (P1) that F is a (b, c)-edge separator of G. Finally,
note that F is minimal — (P2) implies that no edge in any Fv can be removed
from F , and (P3) implies that no edge in π(X) can be removed from F . Thus
F is a minimal (b, c)-edge separator of cardinality at least |π(X)|+ |X ∩V |, and
so Subclaim 3 follows.

We now prove the first part of Claim 1. By Subclaim 1, all but at most
25mk minimal separators of G′ are minimal (b, c)-separators for some b, c ∈ V .
Moreover, by Subclaim 2, there are at most n2 · 2m+n3k(x−1) such separators X
with |π(X)| < x. Finally, by Subclaim 3 and the definition of x, if |π(X)| ≥ x
then X is x-good. It follows that all but at most 25mk+n22m+n3k(x−1) minimal
separators of G′ are x-good. We have

25mk ≤ 25k2 ≤ 2k+5 ≤ 3
2

3
(k+5) ≤ 3k−2 ≤

3kx

8

and

n22m+n3k(x−1) ≤ 3k−163k(x−1) ≤
3kx

8
,

so all but at most 3kx/4 minimal separators of G′ are x-good as required.

21

The second part of Claim 1 follows more easily. By Subclaim 2, all but
at most 2m+n3k(y−1) minimal (s, t)-separators X of G′ satisfy |π(X)| ≥ y. It
therefore follows from Subclaim 3 that all but at most

2m+n3k(y−1) ≤
3ky

4

minimal (s, t)-separators of G′ are y-good as required. Thus Claim 1 follows, as
does the result.

We can now prove Theorem 2.

Theorem 2. The problems #(s, t)-BiMinimalSeps, #BiMinimalSeps, #(s, t)-
BiConnMinimalSeps, #BiConnMinimalSeps and #BiInclusionMinimalSeps are
#P-complete and are equivalent to #SAT under AP-reduction.

Proof. All five problems are in #P, and hence AP-reducible to #SAT by [10].
As in the proof of Theorem 1, Lemma 18 implies that

#LargeMinimalEdgeSeps ≤AP #BiMinimalSeps,

#LargeMinimalEdgeSeps ≤AP #BiInclusionMinimalSeps,

#(s, t)-LargeMinimalEdgeSeps ≤AP #(s, t)-BiMinimalEdgeSeps.

Moreover, since LMES(G) and LMES(G, s, t) are integers for all G, s and t,
Lemma 18 also yields exact Turing reductions. Finally, note that in the proof of
Lemma 18, all good minimal separators of G′ separate G′ into two components
(see (2)). Analogues of Lemma 18(ii)–(iv) for #(s, t)-BiConnMinimalSeps and
#BiConnMinimalSeps therefore follow instantly. The result now follows by
Lemma 16.

5. Problems related to #MaximalBIS

5.1. Hardness of #BiDomSets

Recall that #MaximalBIS can be viewed as counting the number of inde-
pendent dominating sets in a bipartite graph — a combination of #BIS and
#BiDomSets. We shall now prove that #BiDomSets is #SAT-hard. We shall
reduce from the following problem, which is well-known to be #SAT-hard in
the guise of #IS (see Theorem 7).

Definition 19. Let G = (V,E) be a graph. A set S ⊆ V is a vertex cover of
G if e ∩ S 6= ∅ for all e ∈ E. We write VC(G) for the number of vertex covers
of G.

Problem 17. #VertexCovers.
Input: A graph G.
Output: The number of vertex covers of G, which we denote by VC(G).

We can now prove Theorem 4.

22

1

23

1

23

s

G G′

Figure 4: An example of the reduction from an instance G of #VertexCovers to an instance G′

of #BiDomSets used in the proof of Theorem 4. The boxes around vertices indicate a vertex
cover in G and a corresponding dominating set in G′. Note in particular how the presence of
s ensures that vertices 1, 2 and 3 are dominated in G′.

Theorem 4. #BiDomSets ≡AP #SAT.

Proof. For every instance G′ of #BiDomSets, let DS(G′) be the number of
dominating sets in G′. Since #BiDomSets is in #P, #BiDomSets ≤AP #SAT
follows from [10]. We will show #VertexCovers ≤AP #BiDomSets. Let G =
(V,E) be an instance of #VertexCovers. Without loss of generality, let V = [n]
for some n ∈ N, let m = |E|, and let t = ⌈n + log2(m + 1) + 3⌉. We shall
construct an instance G′ of #BiDomSets with the property that VC(G) ≤
DS(G′)/2(m+1)t ≤ VC(G) + 1

4 , which will be sufficient for the reduction as in
the proof of Theorem 1. See Figure 4 for an example.

Informally, we obtain a bipartite graphG′ (an instance of #BiDomSets) from
G by first thickening and then 2-stretching each edge, then adding a gadget to
G’s vertices which will allow us to ignore their domination constraints. Formally,
we define G′ as follows. For each e ∈ E let Xe be a set of t vertices, disjoint
from [n], where Xe ∩ Xf = ∅ whenever e 6= f . Let W =

⋃

e∈E Xe. Let Y be
a set of t vertices disjoint from [n] ∪W , and let s be a vertex not contained in
[n] ∪W ∪ Y . Then we define

V (G′) = Y ∪ {s} ∪ [n] ∪W,

E(G′) = {{y, s} | y ∈ Y } ∪ {{s, i} | i ∈ [n]} ∪
⋃

e={i,j}∈E

{{i, x}, {x, j} | x ∈ Xe}.

We say a dominating set S ⊆ V (G′) is good if the following conditions hold.

23

(i) s ∈ S.

(ii) For all e ∈ E, we have e ∩ S 6= ∅.

We will show that good dominating sets in G′ correspond to vertex covers in G,
and that almost all dominating sets in G′ are good.

First note that there are exactly 2(m+1)t ways of extending any vertex cover
X of G into a good dominating set of G′. Indeed, a set S satisfyingX∩[n] = S is
a good dominating set of G′ if and only if s ∈ S. Hence there are 2(m+1)tVC(G)
good dominating sets of G′, and in particular DS(G′)/2(m+1)t ≥ VC(G).

Moreover, suppose that S is a dominating set of G′ which is not good.
Then either s /∈ S or e ∩ S = ∅ for some e ∈ E. If s /∈ S, then Y ⊆ S. If
e ∩ S = ∅ for some e ∈ E, then Xe ⊆ S. Note that n+ log2(m+ 1) + 2 ≤ t, so
2mt+n+log

2
(m+1) ≤ 2(m+1)t−2. Hence there are at most

(m+ 1)2|V (G′)|−t = (m+ 1)2mt+n+1 ≤
2(m+1)t

4

dominating sets of G′ which are not good. In particular, we have

DS(G′)

2(m+1)t
≤ VC(G) +

1

4
.

The result therefore follows.

5.2. Hardness of #SetUnions

We shall now prove that #SetUnions is #SAT-hard by a reduction from
#MaximalBIS.

Theorem 5. #SetUnions ≡AP #SAT.

Proof. Since #SetUnions is in #P, #SetUnions ≤AP #SAT follows from [10].
We will show #MaximalBIS ≤AP #SetUnions. Let G = (V,E) be an instance
of #MaximalBIS with vertex classes A and B. Note that #MaximalBIS is
hard by Theorem 1. Without loss of generality, let A = [n] for some n ∈ N.
We shall construct an instance (n,F) of #SetUnions with the property that
MIS(G) = |U(F)|, from which the result follows immediately. See Figure 5 for
an example.

Let F = {N(v) | v ∈ B}, so that

U(F) = {N(S) | S ⊆ B}. (3)

Given S ⊆ [n], write S = [n]\S. Similarly, given S ⊆ B, write S = B\S. Given
S ⊆ [n], write MISS(G) for the number of maximal independent sets X ⊆ V
with X ∩ [n] = S. We shall prove that

MISS(G) =

{

1 if S ∈ U(F),

0 otherwise.
(4)

24

1

2

3

4

a

b

c

{{1, 2}, {1, 3, 4} ,{4}}
a b c

A B

G F

Figure 5: An example of the reduction from an instance G of #MaximalBIS to an instance
(n,F) of #SetUnions used in the proof of Theorem 5. The boxes around vertices indicate a
maximal independent set in G and the corresponding union of sets in F .

It will follow immediately that the map X 7→ X ∩ [n] is a bijection from the set
of maximal independent sets of G to U(F).

Take S ⊆ [n]. Note that MISS(G) ∈ {0, 1} — any maximal independent set
X ⊆ V is uniquely determined by its intersection with [n]. It therefore suffices
to prove that MISS(G) > 0 if and only if S ∈ U(F).

First suppose S ∈ U(F). Let T ⊆ B be a maximal set such that S = N(T).
Then it is immediate that there are no edges between S and T . Moreover,
T ⊆ N(S) by maximality of T . Hence S ∪ T is a maximal independent set in
G, and MISS(G) = 1.

Now suppose S /∈ U(F), and suppose X ⊆ V (G) is a maximal independent
set of G with X ∩ [n] = S. Then by independence we have N(S) ∩ X = ∅,
and by maximality we have N(S) ⊆ X . Thus X = S ∪ N(S). By maximality,
it follows that S ⊆ N(N(S)) — otherwise an element of S could be added to
X . But N(N(S)) ∩ S = ∅ since N(S) is precisely the set of vertices in B with
no edges to S, so N(N(S)) ⊆ S and hence S = N(N(S)). But this implies
S ∈ U(F) by equation (3), which is a contradiction. Hence MISS(G) = 0, and
we have proved equation (4). It follows that MIS(G) = |U(F)|, as required.

5.3. Hardness of #UnionReps

We shall now prove that #UnionReps is #SAT-hard by reducing from #Ver-
texCovers.

Theorem 6. #UnionReps ≡AP #SAT.

Proof. Since #UnionReps is in #P, #UnionReps ≤AP #SAT follows from [10].
We will show #VertexCovers ≤AP #UnionReps. Let G = (V,E) be an instance
of #VertexCovers, which is hard by Theorem 7. Without loss of generality let

25

V = [n] for some n ∈ N, and let m = |E|. We shall construct an instance (m,F)
of #UnionReps with the property that |U−1

F ([m])| = VC(G), from which the
result follows immediately.

For each i ∈ [n], let Si be the set of edges incident to i in G. Let F =
{Si | i ∈ [n]}. Thus on identifying E with [m], (m,F) becomes an instance of
#UnionReps. Given a set X ⊆ [n], let X ′ = {Si : i ∈ X}. Then X is a vertex
cover of G if and only if ∪X ′ = E. Thus there is a bijection between U−1

F (E)
and vertex covers of G, and so |U−1

F (E)| = VC(G) as required.

Index of problems

#BiConnMinimalSeps (Problem 6) . 6
#(s, t)-BiConnMinimalSeps (Problem 5) .6
#BiDomSets (Problem 9) . 7
#BiInclusionMinimalSeps (Problem 4) . 6
#BiMinimalEdgeSeps (Problem 8) . 7
#(s, t)-BiMinimalEdgeSeps (Problem 7) . 7
#BiMinimalSeps (Problem 3) . 6
#(s, t)-BiMinimalSeps (Problem 2) . 5
#BIS (Problem 12) . 10
#IS (Problem 13) . 10
#LargeMinimalEdgeSeps (Problem 14) . 12
#(s, t)-LargeMinimalEdgeSeps (Problem 15) . 13
#MaximalBIS (Problem 1) . 5
#MonotonePromise-3-NAE-SAT (Problem 16) . 14
#SetUnions (Problem 10) . 8
#UnionReps (Problem 11) . 8
#VertexCovers (Problem 17) . 22

Acknowledgements

We thank Luca Manzoni and Yuri Pirola for useful discussions.

References

[1] Anne Berry, Jean Paul Bordat, and Olivier Cogis. Generating all the min-
imal separators of a graph. International Journal of Foundations of Com-
puter Science, 11(3):397–403, 2000.

[2] Hans L. Bodlaender and Fedor V. Fomin. Tree decompositions with small
cost. Discrete Applied Mathematics, 145(2):143 – 154, 2005.

[3] Hans L. Bodlaender, Fedor V. Fomin, Arie M.C.A. Koster, Dieter Kratsch,
and Dimitrios M. Thilikos. On exact algorithms for treewidth. ACM Trans.
Algorithms, 9(1):12:1–12:23, 2012.

26

[4] Hans L. Bodlaender and Arie M.C.A. Koster. Combinatorial optimization
on graphs of bounded treewidth. The Computer Journal, 51(3):255–269,
2008.

[5] Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in:
grouping the minimal separators. SIAM Journal on Computing, 31(1):212–
232, 2001.

[6] Vincent Bouchitté and Ioan Todinca. Listing all potential maximal cliques
of a graph. Theoretical Computer Science, 276(1-2):17–32, 2002.

[7] Henning Bruhn, Pierre Charbit, Oliver Schaudt, and Jan Arne Telle. The
graph formulation of the union-closed sets conjecture. European J. Com-
bin., 43:210–219, 2015.

[8] Pierluigi Crescenzi. A short guide to approximation preserving reductions.
In Twelfth Annual IEEE Conference on Computational Complexity (Ulm,
1997), pages 262–273. IEEE Computer Soc., Los Alamitos, CA, 1997.

[9] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[10] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum.
The relative complexity of approximate counting problems. Algorithmica,
38(3):471–500, 2004. Approximation algorithms.

[11] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact
algorithms for treewidth and minimum fill-in. SIAM Journal on Comput-
ing, 38(3):1058–1079, 2008.

[12] Fedor V. Fomin and Yngve Villanger. Finding induced subgraphs via min-
imal triangulations. In 27th International Symposium on Theoretical As-
pects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France,
pages 383–394, 2010.

[13] Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal
combinatorics. Combinatorica, 32(3):289–308, 2012.

[14] Masanobu Furuse and Koichi Yamazaki. A revisit of the scheme for comput-
ing treewidth and minimum fill-in. Theoretical Computer Science, 531(0):66
– 76, 2014.

[15] Leslie Ann Goldberg. Efficient Algorithms for Listing Combinatorial Struc-
tures. Cambridge University Press, 1993. Cambridge Books Online.

[16] Leslie Ann Goldberg, Rob Gysel, and John Lapinskas. Approximately
counting locally-optimal structures. In Automata, Languages, and Pro-
gramming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 654–665, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

27

[17] Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic
Ising with local fields. Combin. Probab. Comput., 16(1):43–61, 2007.

[18] Leslie Ann Goldberg and Mark Jerrum. Approximating the partition func-
tion of the ferromagnetic Potts model. J. ACM, 59(5):Art. 25, 31, 2012.

[19] Leslie Ann Goldberg and Mark Jerrum. The complexity of approximately
counting tree homomorphisms. ACM Trans. Comput. Theory, 2(2), 2014.

[20] Rob Gysel. Unique perfect phylogeny characterizations via uniquely repre-
sentable chordal graphs. CoRR, abs/1305.1375, 2013.

[21] Rob Gysel. Minimal triangulation algorithms for perfect phylogeny prob-
lems. In Proceedings of the 8th International Conference on Language and
Automata Theory and Applications, Lecture Notes in Computer Science,
volume 8370, pages 421–432. Springer, 2014.

[22] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
How easy is local search? J. Comput. Syst. Sci., 37(1):79–100, 1988.

[23] Toshinobu Kashiwabara, Sumio Masuda, Kazuo Nakajima, and Toshio Fu-
jisawa. Generation of maximum independent sets of a bipartite graph and
maximum cliques of a circular-arc graph. J. Algorithms, 13(1):161–174,
1992.

[24] Shuji Kijima, Yoshio Okamoto, and Takeaki Uno. Dominating set counting
in graph classes. In Computing and Combinatorics - 17th Annual Interna-
tional Conference, COCOON 2011, Dallas, TX, USA, August 14-16, 2011.
Proceedings, pages 13–24, 2011.

[25] Ton Kloks and Dieter Kratsch. Listing all minimal separators of a graph.
SIAM Journal on Computing, 27:605–613, 1998.

[26] Daniel Lokshtanov. On the complexity of computing treelength. Discrete
Applied Mathematics, 158(7):820 – 827, 2010.

[27] Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search prob-
lems that are hard to solve. SIAM J. Comput., 20(1):56–87, 1991.

[28] Hong Shen andWeifa Liang. Efficient enumeration of all minimal separators
in a graph. Theoretical Computer Science, 180(1-2):169–180, 1997.

[29] Michael Sipser. Introduction to the Theory of Computation. Cengage Learn-
ing, 2nd edition, 2005.

[30] Ken Takata. Space-optimal, backtracking algorithms to list the minimal
vertex separators of a graph. Discrete Appl. Math., 158(15):1660–1667,
2010.

28

[31] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A
new algorithm for generating all the maximal independent sets. SIAM J.
Comput., 6(3):505–517, 1977.

[32] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar
graphs. SIAM J. Comput., 31(2):398–427, 2001.

[33] Hassler Whitney. Planar graphs. Fundamenta Mathematicae, 21(1):73–84,
1933.

[34] David Zuckerman. On unapproximable versions of NP-complete problems.
SIAM J. Comput., 25(6):1293–1304, 1996.

29

	1 Introduction
	1.1 Detailed Results

	2 Preliminaries
	3 Hardness of #MaximalBIS
	4 Minimal separator problems
	4.1 Two intermediate problems
	4.2 Hardness of minimal separator problems

	5 Problems related to #MaximalBIS
	5.1 Hardness of #BiDomSets
	5.2 Hardness of #SetUnions
	5.3 Hardness of #UnionReps

