Skip to main content

Local Reductions

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

We reduce non-deterministic time \(T \ge 2^n\) to a 3SAT instance \(\phi \) of quasilinear size \(|\phi | = T \cdot \log ^{O(1)} T\) such that there is an explicit circuit C that on input an index i of \(\log |\phi |\) bits outputs the ith clause, and each output bit of C depends on O(1) input bits. The previous best result was C in NC\(^1\). Even in the simpler setting of polynomial size \(|\phi | = \mathrm {poly}(T)\) the previous best result was C in AC\(^0\).

More generally, for any time \(T \ge n\) and parameter \(r \le n\) we obtain \(\log _2 |\phi | = \max (\log T, n/r) + O(\log n) + O(\log \log T)\) and each output bit of C is a decision tree of depth \(O(\log r)\).

As an application, we tighten Williams’ connection between satisfiability algorithms and circuit lower bounds (STOC 2010; SIAM J. Comput. 2013).

Supported by NSF grants CCF-0845003, CCF-1319206.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the complexity of reductions. Computational Complexity 10(2), 117–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. J. of the ACM, 57(3) (2010)

    Google Scholar 

  3. Arora, S., Steurer, D., Wigderson, A.: Towards a study of low-complexity graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 119–131. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Batcher, K.E.: Sorting networks and their applications. AFIPS Spring Joint Computing Conference 32, 307–314 (1968)

    Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete-efficiency threshold of probabilistically-checkable proofs. Electronic Colloquium on Computational Complexity (ECCC) 19, 45 (2012)

    Google Scholar 

  6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to delegatable succinct constraint satisfaction problems. In: ACM Innovations in Theoretical Computer Science Conf. (ITCS), pp. 401–414 (2013)

    Google Scholar 

  7. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs verifiable in polylogarithmic time. In: IEEE Conf. on Computational Complexity (CCC), pp. 120–134 (2005)

    Google Scholar 

  8. Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating AC\(^0\) by small height decision trees and a deterministic algorithm for #AC\(^0\)sat. In: IEEE Conf. on Computational Complexity (CCC), pp. 117–125 (2012)

    Google Scholar 

  9. Blum, N.: A boolean function requiring 3n network size. Theoretical Computer Science 28, 337–345 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beigel, R., Tarui, J.: On ACC. Computational Complexity 4(4), 350–366 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben-Sasson, E., Viola, E.: Short PCPs with projection queries (2014). http://www.ccs.neu.edu/home/viola/

  12. Calabro, C.: A lower bound on the size of series-parallel graphs dense in long paths. Electronic Colloquium on Computational Complexity (ECCC), 15(110) (2008)

    Google Scholar 

  13. Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm for small De Morgan formulas. Technical Report TR13-150, Electronic Colloquium on Computational Complexity (2013). http://www.eccc.uni-trier.de/

  14. Cook, S.A.: Short propositional formulas represent nondeterministic computations. Information Processing Letters 26(5), 269–270 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic \((2-2/(k+1))n\) algorithm for \(k\)-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower bounds for satisfiability. J. of the ACM 52(6), 835–865 (2005)

    Article  Google Scholar 

  17. Goldmann, M., Håstad, J., Razborov, A.A.: Majority gates vs. general weighted threshold gates. Computational Complexity 2, 277–300 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gurevich, Y., Shelah, S.: Nearly linear time. In: Logic at Botik, Symposium on Logical Foundations of Computer Science, pp. 108–118 (1989)

    Google Scholar 

  19. Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general. In: IEEE Symp. on Foundations of Computer Science (FOCS), pp. 277–284 (2011)

    Google Scholar 

  20. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Comput. Complexity 1(2), 113–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. J. of Computer and System Sciences 46(2), 129–154 (1993)

    Article  MATH  Google Scholar 

  22. Hennie, F., Stearns, R.: Two-tape simulation of multitape turing machines. J. of the ACM 13, 533–546 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  23. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. In: IEEE Conf. on Computational Complexity (CCC) (2001)

    Google Scholar 

  24. Iwama, K., Morizumi, H.: An explicit lower bound of \(5n - o(n)\) for boolean circuits. In: Symp. on Math. Foundations of Computer Science (MFCS), pp. 353–364 (2002)

    Google Scholar 

  25. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC\(^{\text{0 }}\). In: ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 961–972 (2012)

    Google Scholar 

  26. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Impagliazzo, R., Paturi, R., Schneider, S.: A satisfiability algorithm for sparse depth-2 threshold circuits. IEEE Symp. on Foundations of Computer Science (FOCS) (2013)

    Google Scholar 

  28. Jahanjou, H., Miles, E., Viola, E.: Succinct and explicit circuits for sorting and connectivity (2014). http://www.ccs.neu.edu/home/viola/

  29. Kulikov, A.S., Melanich, O., Mihajlin, I.: A 5n \(-\) o(n) lower bound on the circuit size over U \(_\text{2 }\) of a linear boolean function. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 432–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Lachish, O., Raz, R.: Explicit lower bound of 4.5n - o(n) for boolena circuits. In: ACM Symp. on the Theory of Computing (STOC), pp. 399–408 (2001)

    Google Scholar 

  31. Mie, T.: Short pcpps verifiable in polylogarithmic time with o(1) queries. Ann. Math. Artif. Intell. 56(3–4), 313–338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Makino, K., Tamaki, S., Yamamoto, M.: Derandomizing HSSW algorithm for 3-SAT (2011). CoRR, abs/1102.3766

    Google Scholar 

  33. Oliveira, I.C.: Algorithms versus circuit lower bounds (2013). CoRR, abs/1309.0249

    Google Scholar 

  34. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. of the ACM 26(2), 361–381 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-sat. J. of the ACM 52(3), 337–364 (2005)

    Article  MATH  Google Scholar 

  36. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: ACM Symp. on the Theory of Computing (STOC), pp. 194–203 (1994)

    Google Scholar 

  37. Robson, J.M.: An O(T log T) reduction from RAM computations to satisfiability. Theoretical Computer Science 82(1), 141–149 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ruzzo, W.L.: On uniform circuit complexity. J. of Computer and System Sciences 22(3), 365–383 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schnorr, C.-P.: Satisfiability is quasilinear complete in NQL. J. of the ACM 25(1), 136–145 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shoup, V.: Searching for primitive roots in finite fields. Math. Comp. 58, 369–380 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Santhanam, R., Williams, R.: Uniform circuits, lower bounds, and qbf algorithms. Electronic Colloquium on Computational Complexity (ECCC) 19, 59 (2012)

    Google Scholar 

  42. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977)

    Chapter  Google Scholar 

  43. Viola, E.: Challenges in computational lower bounds (2013). http://www.ccs.neu.edu/home/viola/

  44. van Melkebeek, D.: A survey of lower bounds for satisfiability and related problems. Foundations and Trends in Theoretical Computer Science 2(3), 197–303 (2006)

    Article  MATH  Google Scholar 

  45. Viola, E., NEU. From RAM to SAT (2012). http://www.ccs.neu.edu/home/viola/

  46. Vollmer, H.: Introduction to circuit complexity. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

  47. Williams, R.: Guest column: a casual tour around a circuit complexity bound. SIGACT News 42(3), 54–76 (2011)

    Article  Google Scholar 

  48. Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conf. on Computational Complexity (CCC), pp. 115–125 (2011)

    Google Scholar 

  49. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. SIAM J. on Computing 42(3), 1218–1244 (2013)

    Article  MATH  Google Scholar 

  50. Williams, R.: Natural proofs versus derandomization. In: ACM Symp. on the Theory of Computing (STOC) (2013)

    Google Scholar 

  51. Williams, R.: New algorithms and lower bounds for circuits with linear threshold gates (2014)

    Google Scholar 

  52. Yao, A.C.-C.: On ACC and threshold circuits. In: IEEE Symp. on Foundations of Computer Science (FOCS), pp. 619–627 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Miles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jahanjou, H., Miles, E., Viola, E. (2015). Local Reductions. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics