Skip to main content

Binary Pattern Tile Set Synthesis Is NP-hard

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

We solve an open problem, stated in 2008, about the feasibility of designing efficient algorithmic self-assembling systems which produce 2-dimensional colored patterns. More precisely, we show that the problem of finding the smallest tile assembly system which will self-assemble an input pattern with 2 colors (i.e., \(2\)-Pats) is NP-hard. One crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof for the four color theorem and the recent important advance on the Erdős discrepancy problem using computer programs. In this paper, these techniques will be brought to a new order of magnitude, computational tasks corresponding to one CPU-year. We massively parallelize our program, and provide a full proof of its correctness. Its source code is freely available online.

We thank Manuel Bertrand for his infinite patience and helpful assistance with setting up the server and helping debug our network and system problems, and Cécile Barbier, Eric Fede and Kai Poutrain for their assistance with software setup.

S. Kopecki—Supported by the NSERC Discovery Grant R2824A01 and UWO Faculty of Science grant to L.K.

P.É. Meunier—Supported in part by NSF Grant CCF-1219274.

M.J. Patitz—Supported in part by NSF Grants CCF-1117672 and CCF-1422152.

S. Seki—Supported in part by Academy of Finland, Grant 13266670/T30606.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. J. ACM 57(3), 14:1–14:36 (2010)

    Article  Google Scholar 

  2. Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Illinois J. Math. 21, 429–490 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Appel, K., Haken, W.: Every planar map is four colorable. Part II. reducibility. Illinois J. Math. 21, 491–567 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano. Lett. 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  5. Chow, T.Y.: Almost-natural proofs. J. Comput. Syst. Sci. 77(4), 728–737 (2011)

    Article  MATH  Google Scholar 

  6. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gonthier, G.: Formal proof - the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets in patterned DNA self-assembly. J. Comput. Syst. Sci. 80, 297–319 (2014)

    Article  MATH  Google Scholar 

  10. Helfgott, H.A.: The ternary Goldbach conjecture is true arXiv:1312.7748 (2013)

  11. Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness of 11-colored patterned self-assembly of tile set synthesis. arXiv:1409.1619 (2014)

  13. Kari, L., Kopecki, S., Meunier, P.E., Patitz, M.J., Seki, S.: Binary pattern tile set synthesis is NP-hard. arXiv:1404.0967 (2014)

  14. Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comp. (2014) (in Press)

    Google Scholar 

  15. Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture. arXiv: 1402.2184 (2014)

  16. Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  17. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE T. Comput. Aid. D. 27(5), 963–967 (2008)

    Article  Google Scholar 

  18. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), Article No. 11 (2008)

    Google Scholar 

  19. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)

    Article  Google Scholar 

  20. Razborov, A.A., Rudich, S.: Natural proofs. In: Proc. STOC 1994, pp. 204–213. ACM, New York (1994)

    Google Scholar 

  21. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: A new proof of the four-colour theorem. Electron. Res. Announc. AMS. 2(1), 17–25 (1996)

    Article  MathSciNet  Google Scholar 

  22. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  23. Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. J. Comput. Syst. Sci. 55, 204–213 (1997)

    MathSciNet  Google Scholar 

  24. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  25. Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)

    Article  Google Scholar 

  26. Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Sterling, A.: https://nanoexplanations.wordpress.com/2011/08/13/dna-self-assembly-of-multicolored-rectangles/

  28. Tuckerman, B.: The 24th Mersenne prime. Proc. Nat. Acad. Sci. USA 68, 2319–2320 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, H.: Proving theorems by pattern recognition - II. AT&T Tech. J. XL(1), 1–41 (1961)

    Google Scholar 

  30. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology, June 1998

    Google Scholar 

  31. Yan, H., Park, S.H., Finkelson, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

  32. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  33. Zhang, J., Liu, Y., Ke, Y., Yan, H.: Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Letters 6(2), 248–251 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Patitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kari, L., Kopecki, S., Meunier, PÉ., Patitz, M.J., Seki, S. (2015). Binary Pattern Tile Set Synthesis Is NP-hard. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics