Abstract
We solve an open problem, stated in 2008, about the feasibility of designing efficient algorithmic self-assembling systems which produce 2-dimensional colored patterns. More precisely, we show that the problem of finding the smallest tile assembly system which will self-assemble an input pattern with 2 colors (i.e., \(2\)-Pats) is NP-hard. One crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof for the four color theorem and the recent important advance on the Erdős discrepancy problem using computer programs. In this paper, these techniques will be brought to a new order of magnitude, computational tasks corresponding to one CPU-year. We massively parallelize our program, and provide a full proof of its correctness. Its source code is freely available online.
We thank Manuel Bertrand for his infinite patience and helpful assistance with setting up the server and helping debug our network and system problems, and Cécile Barbier, Eric Fede and Kai Poutrain for their assistance with software setup.
S. Kopecki—Supported by the NSERC Discovery Grant R2824A01 and UWO Faculty of Science grant to L.K.
P.É. Meunier—Supported in part by NSF Grant CCF-1219274.
M.J. Patitz—Supported in part by NSF Grants CCF-1117672 and CCF-1422152.
S. Seki—Supported in part by Academy of Finland, Grant 13266670/T30606.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. J. ACM 57(3), 14:1–14:36 (2010)
Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Illinois J. Math. 21, 429–490 (1977)
Appel, K., Haken, W.: Every planar map is four colorable. Part II. reducibility. Illinois J. Math. 21, 491–567 (1977)
Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano. Lett. 5(12), 2586–2592 (2005)
Chow, T.Y.: Almost-natural proofs. J. Comput. Syst. Sci. 77(4), 728–737 (2011)
Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)
Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)
Gonthier, G.: Formal proof - the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)
Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets in patterned DNA self-assembly. J. Comput. Syst. Sci. 80, 297–319 (2014)
Helfgott, H.A.: The ternary Goldbach conjecture is true arXiv:1312.7748 (2013)
Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013)
Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness of 11-colored patterned self-assembly of tile set synthesis. arXiv:1409.1619 (2014)
Kari, L., Kopecki, S., Meunier, P.E., Patitz, M.J., Seki, S.: Binary pattern tile set synthesis is NP-hard. arXiv:1404.0967 (2014)
Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comp. (2014) (in Press)
Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture. arXiv: 1402.2184 (2014)
Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)
Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE T. Comput. Aid. D. 27(5), 963–967 (2008)
Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), Article No. 11 (2008)
Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)
Razborov, A.A., Rudich, S.: Natural proofs. In: Proc. STOC 1994, pp. 204–213. ACM, New York (1994)
Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: A new proof of the four-colour theorem. Electron. Res. Announc. AMS. 2(1), 17–25 (1996)
Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)
Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. J. Comput. Syst. Sci. 55, 204–213 (1997)
Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)
Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)
Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231. Springer, Heidelberg (2013)
Sterling, A.: https://nanoexplanations.wordpress.com/2011/08/13/dna-self-assembly-of-multicolored-rectangles/
Tuckerman, B.: The 24th Mersenne prime. Proc. Nat. Acad. Sci. USA 68, 2319–2320 (1971)
Wang, H.: Proving theorems by pattern recognition - II. AT&T Tech. J. XL(1), 1–41 (1961)
Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology, June 1998
Yan, H., Park, S.H., Finkelson, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)
Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)
Zhang, J., Liu, Y., Ke, Y., Yan, H.: Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Letters 6(2), 248–251 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kari, L., Kopecki, S., Meunier, PÉ., Patitz, M.J., Seki, S. (2015). Binary Pattern Tile Set Synthesis Is NP-hard. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_83
Download citation
DOI: https://doi.org/10.1007/978-3-662-47672-7_83
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47671-0
Online ISBN: 978-3-662-47672-7
eBook Packages: Computer ScienceComputer Science (R0)