Abstract
Since the introduction of the frequent pattern mining problem, researchers have extended frequent patterns to different useful patterns such as cyclic, emerging, periodic and regular patterns. In this paper, we (i) introduce popular patterns, which capture the popularity of individuals, items, or events among their peers or groups. Moreover, we also propose (ii) the Pop-tree structure to capture the essential information from transactional databases and (iii) the Pop-growth algorithm for mining popular patterns from the Pop-tree. Moreover, we illustrate how our algorithm (iv) mines popular friends from social networks. As we are not confined to mining popular patterns from static transactional databases, we extend our work to mining popular patterns from dynamic data streams. Specifically, we propose (v) the Pop-stream structure to capture the popular patterns in batches of data streams and (vi) the Pop-streaming algorithm for mining popular patterns from the Pop-stream structure. Experimental results showed that (i) our proposed tree structure is compact and space efficient and (ii) our proposed algorithm is time efficient in mining popular patterns from static transactional databases and dynamic data streams.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)
Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerging patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)
Bonifati, A., Cuzzocrea, A.: Storing and retrieving XPath fragments in structured P2P networks. Data Knowl. Eng. 59(2), 247–269 (2006)
Cuzzocrea, A.: Retrieving accurate estimates to OLAP queries over uncertain and imprecise multidimensional data streams. In: Cushing, J.B., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575–576. Springer, Heidelberg (2011)
Cuzzocrea, A., Furfaro, F., Greco, S., Masciari, E., Mazzeo, G.M., Saccà, D.: A distributed system for answering range queries on sensor network data. In: IEEE PerCom 2005 Workshops, pp. 369–373 (2005)
Cuzzocrea, A., Furfaro, F., Masciari, E., Saccà, D., Sirangelo, C.: A distributed system for answering range queries on sensor network data. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor Networks, pp. 53–72. CRC Press (2004)
Cuzzocrea, A., Gunopulos, D.: A decomposition framework for computing and querying multidimensional OLAP data cubes over probabilistic relational data. Fundamenta Informaticae 132(2), 239–266 (2014)
Cuzzocrea, A., Saccà, D., Ullman, J.D.: Big data: a research agenda. In: IDEAS 2013, pp. 198–203. ACM (2013)
Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends among friends in social networks. In: IEEE DASC 2011, pp. 824–831 (2011)
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM 2006, pp. 328–339. SIAM (2006)
Castellanos, M., Gupta, C., Wang, S., Dayal, U.: Leveraging web streams for contractual situational awareness in operational BI. In: EDBT/ICDT 2010 Workshops, art. 7. ACM (2010)
Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based pattern detection in streaming time series. In: IEEE ICDE 2007, pp. 786–795 (2007)
Cuzzocrea, A., Papadimitriou, A., Katsaros, D., Manolopoulos, Y.: Edge betweenness centrality: a novel algorithm for QoS-based topology control over wireless sensor networks. J. Netw. Comput. Appl. 35(4), 1210–1217 (2012)
Gaber, M.M., Zaslavsky, A.B., Krishnaswamy, S.: Mining data streams: a review. SIGMOD Rec. 34(2), 18–26 (2005)
Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data streams at multiple time granularities. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Data Mining: Next Generation Challenges and Future Directions, pp. 105–124. AAAI/MIT Press (2004)
Gupta, A., Bhatnagar, V., Kumar, N.: Mining closed itemsets in data stream using formal concept analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2010. LNCS, vol. 6263, pp. 285–296. Springer, Heidelberg (2010)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)
Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining. SIGMOD Rec. 35(1), 14–19 (2006)
Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained frequent sets. ACM Trans. Database Syst. 28(4), 337–389 (2003)
Lee, Y.-K., Kim, W.-Y., Cai, Y.D., Han, J.: CoMine: efficient mining of correlated patterns. In: IEEE ICDM 2003, pp. 581–584 (2003)
Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncertain data streams with time-fading and landmark models. T. Large-Scale Data- and Knowl.-Centered Syst. 8, 174–196 (2013)
Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain data. In: IEEE ICDE 2009, pp. 1663–1670 (2009)
Leung, C.K.-S., Jiang, F.: Frequent pattern mining from time-fading streams of uncertain data. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 252–264. Springer, Heidelberg (2011)
Leung, C.K.-S., Sun, L.: A new class of constraints for constrained frequent pattern mining. In: ACM SAC 2012, pp. 199–204 (2012)
Leung, C.K.-S., Tanbeer, S.K.: Mining popular patterns from transactional databases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 291–302. Springer, Heidelberg (2012)
Leung, C.K.-S., Tanbeer, S.K.: Mining social networks for significant friend groups. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA Workshops 2012. LNCS, vol. 7240, pp. 180–192. Springer, Heidelberg (2012)
Motro, A.: Imprecision and uncertainty in database systems. In: Base, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems. pp. 3–22. Physica-Verlag (1995)
Ng, W., Dash, M.: Discovery of frequent patterns in transactional data streams. T. Large-Scale Data- and Knowl.-Centered Syst. 2, 1–30 (2010)
Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series databases using suffix trees. IEEE Trans. Knowl. Data Eng. 23(1), 79–94 (2011)
Rashid, M.M., Karim, M.R., Jeong, B.-S., Choi, H.-J.: Efficient mining regularly frequent patterns in transactional databases. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 258–271. Springer, Heidelberg (2012)
Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern mining: a unified framework. Data Min. Knowl. Disc. 21(3), 371–397 (2010)
Xiong, H., Tan, P.-N., Kumar, V.: Hyperclique pattern discovery. Data Min. Knowl. Disc. 13(2), 219–242 (2006)
Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data Knowl. Eng. 59(3), 603–626 (2006)
Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gaprequirement from sequences, ACM Trans. Knowl. Discov. Data 1(2), art. 7 (2007)
Acknowledgement
This project is partially supported by (i) China Scholarship Council (CSC), (ii) Mitacs (Canada), (iii) Natural Sciences and Engineering Research Council of Canada (NSERC), and (iv) University of Manitoba.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cuzzocrea, A., Jiang, F., Leung, C.K., Liu, D., Peddle, A., Tanbeer, S.K. (2015). Mining Popular Patterns: A Novel Mining Problem and Its Application to Static Transactional Databases and Dynamic Data Streams. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXI. Lecture Notes in Computer Science(), vol 9260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47804-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-47804-2_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47803-5
Online ISBN: 978-3-662-47804-2
eBook Packages: Computer ScienceComputer Science (R0)