Abstract
In this paper, a Pareto-based discrete harmony search (P-DHS) algorithm is proposed to solve the reentrant hybrid flowshop scheduling problem (RHFSP) with the makespan and the total tardiness criteria. For each job, the operation set of each pass is regarded as a sub-job. To adopt the harmony search algorithm to solve the RHFSP, each harmony vector is represented by a discrete sub-job sequence, which determines the priority to allocate all the operations. To handle the discrete representation, a novel improvisation scheme is designed. During the search process, the explored non-dominated solutions are stored in the harmony memory with a dynamic size. The influence of the parameter setting is investigated, and numerical tests are carried out based on some benchmarking instances. The comparisons to some existing algorithms in terms of several performance metrics demonstrate the effectiveness of the P-DHS algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Linn, R., Zhang, W.: Hybrid flow shop scheduling: a survey. Comput. Ind. Eng. 37(1), 57–61 (1999)
Ruiz, R., Vázquez-Rodríguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)
Ribas, I., Leisten, R., Framiñan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)
Ying, K.C., Lin, S.W., Wan, S.Y.: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm. Int. J. Prod. Res. 52(19), 5735–5747 (2014)
Wang, M.Y., Sethi, S.P., Van De Velde, S.L.: Minimizing makespan in a class of reentrant shops. Oper. Res. 45(5), 702–712 (1997)
Choi, H.S., Kim, H.W., Lee, D.H., Yoon, J., Yun, C.Y., Chae, K.B.: Scheduling algorithms for two-stage reentrant hybrid flow shops: minimizing makespan under the maximum allowable due dates. Int. J. Adv. Manuf. Technol. 42(9–10), 963–973 (2009)
Hekmatfar, M., Ghomi, S.F., Karimi, B.: Two stage reentrant hybrid flow shop with setup times and the criterion of minimizing makespan. Appl. Soft Comput. 11(8), 4530–4539 (2011)
Bertel, S., Billaut, J.C.: A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. Eur. J. Oper. Res. 159(3), 651–662 (2004)
Choi, S.W., Kim, Y.D., Lee, G.C.: Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. Int. J. Prod. Res. 43(11), 2149–2167 (2005)
Kim, H.W., Lee, D.H.: Heuristic algorithms for re-entrant hybrid flow shop scheduling with unrelated parallel machines. Proc. Inst. Mech. Eng. B. 223(4), 433–442 (2009)
Cho, H.M., Bae, S.J., Kim, J., Jeong, I.J.: Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm. Comput. Ind. Eng. 61(3), 529–541 (2011)
Pearn, W.L., Chung, S.H., Chen, A.Y., Yang, M.H.: A case study on the multistage IC final testing scheduling problem with reentry. Int. J. Prod. Econ. 88(3), 257–267 (2004)
Dugardin, F., Yalaoui, F., Amodeo, L.: New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur. J. Oper. Res. 203(1), 22–31 (2010)
Choi, H.S., Kim, J.S., Lee, D.H.: Real-time scheduling for reentrant hybrid flow shops: a decision tree based mechanism and its application to a TFT-LCD line. Exp. Syst. Appl. 38(4), 3514–3521 (2011)
Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011)
Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inform. Sciences. 237, 82–117 (2013)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simul. 76(2), 60–68 (2001)
Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Meth. Appl. Mech. Eng. 194(36), 3902–3933 (2005)
Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)
Degertekin, S.O.: Improved harmony search algorithms for sizing optimization of truss structures. Comput. Struct. 92, 229–241 (2012)
Sivasubramani, S., Swarup, K.S.: Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energ. Syst. 33(3), 745–752 (2011)
Khazali, A.H., Kalantar, M.: Optimal reactive power dispatch based on harmony search algorithm. Int. J. Electr. Power Energ. Syst. 33(3), 684–692 (2011)
Diao, R., Shen, Q.: Feature selection with harmony search. IEEE Tran. Syst. Man. Cybernet. B. 42(6), 1509–1523 (2012)
Wang, L., Pan, Q.K., Tasgetiren, M.F.: A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem. Comput. Ind. Eng. 61(1), 76–83 (2011)
Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Duxbury, Pacific Grove (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, J., Wang, L., Deng, J., Zheng, X. (2016). A Pareto-Based Discrete Harmony Search Algorithm for Bi-objective Reentrant Hybrid Flowshop Scheduling Problem. In: Kim, J., Geem, Z. (eds) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47926-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-662-47926-1_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47925-4
Online ISBN: 978-3-662-47926-1
eBook Packages: EngineeringEngineering (R0)