Skip to main content

A Pareto-Based Discrete Harmony Search Algorithm for Bi-objective Reentrant Hybrid Flowshop Scheduling Problem

  • Conference paper
  • First Online:
Harmony Search Algorithm

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 382))

Abstract

In this paper, a Pareto-based discrete harmony search (P-DHS) algorithm is proposed to solve the reentrant hybrid flowshop scheduling problem (RHFSP) with the makespan and the total tardiness criteria. For each job, the operation set of each pass is regarded as a sub-job. To adopt the harmony search algorithm to solve the RHFSP, each harmony vector is represented by a discrete sub-job sequence, which determines the priority to allocate all the operations. To handle the discrete representation, a novel improvisation scheme is designed. During the search process, the explored non-dominated solutions are stored in the harmony memory with a dynamic size. The influence of the parameter setting is investigated, and numerical tests are carried out based on some benchmarking instances. The comparisons to some existing algorithms in terms of several performance metrics demonstrate the effectiveness of the P-DHS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Linn, R., Zhang, W.: Hybrid flow shop scheduling: a survey. Comput. Ind. Eng. 37(1), 57–61 (1999)

    Article  Google Scholar 

  2. Ruiz, R., Vázquez-Rodríguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)

    Article  MATH  Google Scholar 

  3. Ribas, I., Leisten, R., Framiñan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ying, K.C., Lin, S.W., Wan, S.Y.: Bi-objective reentrant hybrid flowshop scheduling: an iterated Pareto greedy algorithm. Int. J. Prod. Res. 52(19), 5735–5747 (2014)

    Article  Google Scholar 

  5. Wang, M.Y., Sethi, S.P., Van De Velde, S.L.: Minimizing makespan in a class of reentrant shops. Oper. Res. 45(5), 702–712 (1997)

    Article  MATH  Google Scholar 

  6. Choi, H.S., Kim, H.W., Lee, D.H., Yoon, J., Yun, C.Y., Chae, K.B.: Scheduling algorithms for two-stage reentrant hybrid flow shops: minimizing makespan under the maximum allowable due dates. Int. J. Adv. Manuf. Technol. 42(9–10), 963–973 (2009)

    Article  Google Scholar 

  7. Hekmatfar, M., Ghomi, S.F., Karimi, B.: Two stage reentrant hybrid flow shop with setup times and the criterion of minimizing makespan. Appl. Soft Comput. 11(8), 4530–4539 (2011)

    Article  Google Scholar 

  8. Bertel, S., Billaut, J.C.: A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. Eur. J. Oper. Res. 159(3), 651–662 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choi, S.W., Kim, Y.D., Lee, G.C.: Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. Int. J. Prod. Res. 43(11), 2149–2167 (2005)

    Article  MATH  Google Scholar 

  10. Kim, H.W., Lee, D.H.: Heuristic algorithms for re-entrant hybrid flow shop scheduling with unrelated parallel machines. Proc. Inst. Mech. Eng. B. 223(4), 433–442 (2009)

    Article  Google Scholar 

  11. Cho, H.M., Bae, S.J., Kim, J., Jeong, I.J.: Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm. Comput. Ind. Eng. 61(3), 529–541 (2011)

    Article  Google Scholar 

  12. Pearn, W.L., Chung, S.H., Chen, A.Y., Yang, M.H.: A case study on the multistage IC final testing scheduling problem with reentry. Int. J. Prod. Econ. 88(3), 257–267 (2004)

    Article  Google Scholar 

  13. Dugardin, F., Yalaoui, F., Amodeo, L.: New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur. J. Oper. Res. 203(1), 22–31 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Choi, H.S., Kim, J.S., Lee, D.H.: Real-time scheduling for reentrant hybrid flow shops: a decision tree based mechanism and its application to a TFT-LCD line. Exp. Syst. Appl. 38(4), 3514–3521 (2011)

    Article  MathSciNet  Google Scholar 

  15. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011)

    Article  Google Scholar 

  16. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inform. Sciences. 237, 82–117 (2013)

    Article  Google Scholar 

  17. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simul. 76(2), 60–68 (2001)

    Article  Google Scholar 

  18. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Meth. Appl. Mech. Eng. 194(36), 3902–3933 (2005)

    Article  MATH  Google Scholar 

  19. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)

    Article  Google Scholar 

  20. Degertekin, S.O.: Improved harmony search algorithms for sizing optimization of truss structures. Comput. Struct. 92, 229–241 (2012)

    Article  Google Scholar 

  21. Sivasubramani, S., Swarup, K.S.: Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energ. Syst. 33(3), 745–752 (2011)

    Article  Google Scholar 

  22. Khazali, A.H., Kalantar, M.: Optimal reactive power dispatch based on harmony search algorithm. Int. J. Electr. Power Energ. Syst. 33(3), 684–692 (2011)

    Article  Google Scholar 

  23. Diao, R., Shen, Q.: Feature selection with harmony search. IEEE Tran. Syst. Man. Cybernet. B. 42(6), 1509–1523 (2012)

    Article  Google Scholar 

  24. Wang, L., Pan, Q.K., Tasgetiren, M.F.: A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem. Comput. Ind. Eng. 61(1), 76–83 (2011)

    Article  Google Scholar 

  25. Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Duxbury, Pacific Grove (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingnan Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, J., Wang, L., Deng, J., Zheng, X. (2016). A Pareto-Based Discrete Harmony Search Algorithm for Bi-objective Reentrant Hybrid Flowshop Scheduling Problem. In: Kim, J., Geem, Z. (eds) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47926-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47926-1_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47925-4

  • Online ISBN: 978-3-662-47926-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics