Skip to main content

Phase Transition for Local Search on Planted SAT

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 1031 Accesses

Abstract

The Local Search algorithm (or Hill Climbing, or Iterative Improvement) is one of the simplest heuristics to solve the Satisfiability and Max-Satisfiability problems. Although it is not the best known Satisfiability algorithm even for the class of problems we study, the Local Search is a part of many satisfiability and max-satisfiability solvers, where it is used to find a good starting point for a more sophisticated heuristics, and to improve a candidate solution. In this paper we give an analysis of Local Search on random planted 3-CNF formulas. We show that a sharp transition of efficiency of Local Search occurs at density \(\varrho = \frac{7}{6} \ln n\). Specifically we show that if there is \(\kappa <\frac{7}{6}\) such that the clause-to-variable ratio is less than \(\kappa \ln n\) (n is the number of variables in a CNF) then Local Search whp does not find a satisfying assignment, and if there is \(\kappa >\frac{7}{6}\) such that the clause-to-variable ratio is greater than \(\kappa \ln n\) then the local search whp finds a satisfying assignment. As a byproduct we also show that for any constant \(\varrho \) there is \(\gamma \) such that Local Search applied to a random (not necessarily planted) 3-CNF with clause-to-variable ratio \(\varrho \) produces an assignment that satisfies at least \(\gamma n\) clauses less than the maximal number of satisfiable clauses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, D.: Lower bounds for random 3-SAT via differential equations. Theor. Comput. Sci. 265(1–2), 159–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struct. Algorithms 14(1), 63–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alekhnovich, M., Ben-Sasson, E.: Linear upper bounds for random walk on small density random 3-CNFs. SIAM J. Comput. 36(5), 1248–1263 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  5. Amiri, E., Skvortsov, E.S.: Pushing random walk beyond golden ratio. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 44–55. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Ben-Sasson, E., Bilu, Y., Gutfreund, D.: Finding a randomly planted assignment in a random 3-CNF (2002). (manuscript)

    Google Scholar 

  7. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bulatov, A.A., Skvortsov, E.S.: Efficiency of local search. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 297–310. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all k-colorable graphs are easy. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 121–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Coja-Oghlan, A., Panagiotou, K.: Going after the \(k\)-SAT threshold. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 705–714. ACM (2013)

    Google Scholar 

  11. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-SAT. Art. Int. 81(1–2), 31–57 (1996)

    Article  MathSciNet  Google Scholar 

  12. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large \(k\). In: Servedio, R., Rubinfeld, R. (eds.) STOC, pp. 59–68. ACM (2015)

    Google Scholar 

  13. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 339–350. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: SODA, pp. 357–363. ACM/SIAM (2003)

    Google Scholar 

  15. Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-SAT problem. J. Amer. Math. Soc. 12, 1017–1054 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koutsoupias, E., Papadimitriou, C.: On the greedy algorithm for satisfiability. Inf. Process. Lett. 43(1), 53–55 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF formulas in expected polynomial time. In: SODA, pp. 454–463. ACM Press (2006)

    Google Scholar 

  20. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. CoRR abs/cond-mat/0504070 (2005)

    Google Scholar 

  21. Papadimitriou, C.: On selecting a satisfying truth assignment (extended abstract). In: FOCS, pp. 163–169. IEEE Computer Society (1991)

    Google Scholar 

  22. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Swartout, W. (ed.) AAAI, pp. 440–446. AAAI Press/The MIT Press (1992)

    Google Scholar 

  23. Skvortsov, E.S.: A theoretical analysis of search in GSAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 265–275. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Vilenchik, D.: It’s all about the support: a new perspective on the satisfiability problem. JSAT 3(3–4), 125–139 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The fist author was supported by an NSERC Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Bulatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulatov, A.A., Skvortsov, E.S. (2015). Phase Transition for Local Search on Planted SAT. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics