Abstract
The Local Search algorithm (or Hill Climbing, or Iterative Improvement) is one of the simplest heuristics to solve the Satisfiability and Max-Satisfiability problems. Although it is not the best known Satisfiability algorithm even for the class of problems we study, the Local Search is a part of many satisfiability and max-satisfiability solvers, where it is used to find a good starting point for a more sophisticated heuristics, and to improve a candidate solution. In this paper we give an analysis of Local Search on random planted 3-CNF formulas. We show that a sharp transition of efficiency of Local Search occurs at density \(\varrho = \frac{7}{6} \ln n\). Specifically we show that if there is \(\kappa <\frac{7}{6}\) such that the clause-to-variable ratio is less than \(\kappa \ln n\) (n is the number of variables in a CNF) then Local Search whp does not find a satisfying assignment, and if there is \(\kappa >\frac{7}{6}\) such that the clause-to-variable ratio is greater than \(\kappa \ln n\) then the local search whp finds a satisfying assignment. As a byproduct we also show that for any constant \(\varrho \) there is \(\gamma \) such that Local Search applied to a random (not necessarily planted) 3-CNF with clause-to-variable ratio \(\varrho \) produces an assignment that satisfies at least \(\gamma n\) clauses less than the maximal number of satisfiable clauses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, D.: Lower bounds for random 3-SAT via differential equations. Theor. Comput. Sci. 265(1–2), 159–185 (2001)
Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struct. Algorithms 14(1), 63–70 (1999)
Alekhnovich, M., Ben-Sasson, E.: Linear upper bounds for random walk on small density random 3-CNFs. SIAM J. Comput. 36(5), 1248–1263 (2007)
Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (2000)
Amiri, E., Skvortsov, E.S.: Pushing random walk beyond golden ratio. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 44–55. Springer, Heidelberg (2007)
Ben-Sasson, E., Bilu, Y., Gutfreund, D.: Finding a randomly planted assignment in a random 3-CNF (2002). (manuscript)
Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)
Bulatov, A.A., Skvortsov, E.S.: Efficiency of local search. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 297–310. Springer, Heidelberg (2006)
Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all k-colorable graphs are easy. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 121–132. Springer, Heidelberg (2007)
Coja-Oghlan, A., Panagiotou, K.: Going after the \(k\)-SAT threshold. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 705–714. ACM (2013)
Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-SAT. Art. Int. 81(1–2), 31–57 (1996)
Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large \(k\). In: Servedio, R., Rubinfeld, R. (eds.) STOC, pp. 59–68. ACM (2015)
Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 339–350. Springer, Heidelberg (2006)
Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: SODA, pp. 357–363. ACM/SIAM (2003)
Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-SAT problem. J. Amer. Math. Soc. 12, 1017–1054 (1999)
Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)
Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
Koutsoupias, E., Papadimitriou, C.: On the greedy algorithm for satisfiability. Inf. Process. Lett. 43(1), 53–55 (1992)
Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF formulas in expected polynomial time. In: SODA, pp. 454–463. ACM Press (2006)
Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. CoRR abs/cond-mat/0504070 (2005)
Papadimitriou, C.: On selecting a satisfying truth assignment (extended abstract). In: FOCS, pp. 163–169. IEEE Computer Society (1991)
Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Swartout, W. (ed.) AAAI, pp. 440–446. AAAI Press/The MIT Press (1992)
Skvortsov, E.S.: A theoretical analysis of search in GSAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 265–275. Springer, Heidelberg (2009)
Vilenchik, D.: It’s all about the support: a new perspective on the satisfiability problem. JSAT 3(3–4), 125–139 (2007)
Acknowledgment
The fist author was supported by an NSERC Discovery grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bulatov, A.A., Skvortsov, E.S. (2015). Phase Transition for Local Search on Planted SAT. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-662-48054-0_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48053-3
Online ISBN: 978-3-662-48054-0
eBook Packages: Computer ScienceComputer Science (R0)