Abstract
We show that weakly deterministic regular expressions with counters (WDREs) —as they are used in XML Schema— are at most exponentially larger than equivalent DFAs. As a consequence, the problem, whether a given DFA is equivalent to any WDRE, is decidable in EXPSPACE.
M. Latte and M. Niewerth—Supported by grant number MA 4938/21 of the Deutsche Forschungsgemeinschaft (Emmy Noether Nachwuchsgruppe).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless handling of nondeterministic regular expressions. In: ACM SIGMOD, pp. 731–744. ACM (2009)
Brüggemann-Klein, A.: Regular expressions into finite automata. TCS 120(2), 197–213 (1993)
Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 142(2), 182–206 (1998)
Chen, H., Lu, P.: Checking determinism of regular expressions with counting. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 332–343. Springer, Heidelberg (2012)
Czerwiński, W., David, C., Losemann, K., Martens, W.: Deciding definability by deterministic regular expressions. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 289–304. Springer, Heidelberg (2013)
Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak versus strong determinism. SIAM J. Comp. 41(1), 160–190 (2012)
Hovland, D.: Regular expressions with numerical constraints and automata with counters. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 231–245. Springer, Heidelberg (2009)
Hovland, D.: The membership problem for regular expressions with unordered concatenation and numerical constraints. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 313–324. Springer, Heidelberg (2012)
Kilpeläinen, P.: Checking determinism of XML schema content models in optimal time. Inf. Syst. 36(3), 596–617 (2011)
Kilpeläinen, P., Tuhkanen, R.: Towards efficient implementation of XML schema content models. In: DocEng, pp. 239–241. ACM (2004)
Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with numeric occurrence indicators. Inf. Comput. 205(6), 890–916 (2007)
Losemann, K., Martens, W., Niewerth, M.: Descriptional complexity of deterministic regular expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 643–654. Springer, Heidelberg (2012)
Losemann, K., Martens, W., Niewerth, M.: Closure properties and descriptional complexity of deterministic regular expressions. Submitted, (2015)
Lu, P., Bremer, J., Chen, H.: Deciding determinism of regular languages. TOCS 57(1), 1–43 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latte, M., Niewerth, M. (2015). Definability by Weakly Deterministic Regular Expressions with Counters is Decidable. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-662-48057-1_29
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48056-4
Online ISBN: 978-3-662-48057-1
eBook Packages: Computer ScienceComputer Science (R0)