Abstract
We study weighted automata from both an algebraic and a coalgebraic perspective. In particular, we consider equations and coequations for weighted automata. We prove a duality result that relates sets of equations (congruences) with (certain) subsets of coequations. As a consequence, we obtain two equivalent but complementary ways to define classes of weighted automata. We show that this duality cannot be generalized to linear congruences in general but we obtain partial results when weights are from a field.
J. Salamanca—The research of this author is funded by the Dutch NWO project 612.001.210.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized eilenberg theorem i: local varieties of languages. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 366–380. Springer, Heidelberg (2014)
Arbib, M.A., Manes, E.G.: Foundations of system theory: the hankel matrix. J. Comput. Syst. Sci. 20(3), 330–378 (1980)
Ballester-Bolinches, A., Cosme-Llópez, E., Rutten, J.J.M.M:. The dual equivalence of equations and coequations for automata. CWI Technical report FM-1403, pp. 1–41 (2014, To appear inInformation and Computation)
Bezhanishvili, N., Kupke, C., Panangaden, P.: Minimization via duality. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 191–205. Springer, Heidelberg (2012)
Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic perspective on linear weighted automata. Inf. Comp. 211, 77–105 (2012)
Bonchi, F., Bonsangue, M.M., Hansen, H.H., Panangaden, P., Rutten, J., Silva, A.: Algebra-coalgebra duality in brzozowski’s minimization algorithm. ACM Trans. Comput. Logic 15(1), 3 (2014)
Burri, S.N., Sankappanava, H.P.: A course in universal algebra. Graduate Texts in Mathematic, vol. 78. Springer, New York (1981)
Eilenberg, S.: Automata, languages, and machines, vol. B. Academy Press, New York (1976)
Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)
Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73. Springer, New York (1974)
Kuich, W.: Semirings and formal power series. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Word, Language, Grammar, vol. 1, pp. 609–677. Springer, Heidelberg (1997)
Petković, T.: Varieties of fuzzy languages. In: Proceedings of International Conference on Algebraic Informatics. Aristotle University of Thessaloniki (2005)
Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)
Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4, 245–270 (1961)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salamanca, J., Bonsangue, M., Rutten, J. (2015). Equations and Coequations for Weighted Automata. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-662-48057-1_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48056-4
Online ISBN: 978-3-662-48057-1
eBook Packages: Computer ScienceComputer Science (R0)