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Abstract. In this paper we describe an implementation of a software
transactional memory library for the GPU written in CUDA. We describe
the implementation of our transaction mechanism which features both
tentative and regular locking along with a contention management pol-
icy based on a simple, yet effective, static priority rule called Priority
Rule Software Transactional Memory (PR-STM ). We demonstrate com-
petitive performance results in comparison with existing STMs for both
the GPU and CPU. While GPU comparisons have been studied, to the
best of our knowledge we are the first to provide results comparing GPU
based STMs with a CPU based STM.
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1 Introduction

The availability of Graphics Processing Units (GPU) has recently expanded
into the area of general purpose programming, giving rise to a new genre of
applications known as General Purpose GPU [10] (hereafter GPGPU). The
principle benefit of using the GPU is the relatively high degree of parallel com-
putation available compared to the CPU. Furthermore, programming APIs, such
as CUDA [13,14], have grown in sophistication with every new advancement in
GPU design. As such, GPGPU programmers now have at their disposal tools
to enable them to write complex and expressive applications which can leverage
the power of modern GPUs.

As with multi-threaded applications on the CPU, GPGPU applications
require synchronisation techniques to prevent corruption of shared data. As has
long been experienced in the domain of CPU computing, correctly synchronising
multiple threads is a difficult task to implement without introducing errors (such
as deadlock and livelock) [7]. To compound matters, the high number of threads
available on modern GPUs means that contention for shared data is an issue of
greater potential significance than on the CPU where the number of threads is
typically much lower.
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To address the difficulties of multi-threading on the CPU, significant progress
has been made in providing Concurrency Control techniques to aid the concur-
rent programmer. One notable technique is Transactional Memory [8] (TM),
which allows the execution of transactions in both Software [2,6] and Hard-
ware [8,15]. TM provides an intuitive interface to aid programmers of multi-
threaded programs. The TM system guarantees that programs are free of data
inconsistency issues while handling the intricacies of thread coordination and
contention management.

At the time of writing, implementing an efficient TM technique for the GPU
remains an area with much potential for development. The work in this paper
aims to contribute to that development by providing the following:

– An STM algorithm for the GPU based on a simple, yet effective, static priority
rule. We demonstrate that our technique can out-perform a state-of-the-art
STM technique for the GPU called GPU-STM [19];

– Benchmarked performance figures are provided, comparing PR-STM with
both GPU-STM and a widely used STM technique for the CPU, namely
TinySTM [3]. To our knowledge this is the first time that comparisons have
been produced between STM techniques for the GPU and the CPU.

We have enhanced the benchmarking software to assess the performance of
all three techniques with variation on the number of threads, transaction size
and the granularity of lock coverage in addition to the impact of invisible reads.

Section 2 describes the implementation of our STM and Sect. 3 surveys
related work. Section 4 describes our evaluation and, finally, Sect. 5 concludes
the paper and discusses future work.

2 Implementation

2.1 Overview

The operation of the GPU differs considerably from the CPU and this must be
taken into account when implementing transactional algorithms on the GPU.
In addition to the high degree of threads available, groups of GPU threads
execute as part of a ‘warp’. Threads belonging to the same warp share the same
instruction counter and thus execute the same instruction in a ‘lock-step’ fashion.
In addition to the risk of high contention given the high number of threads,
deadlock and livelock are possible because threads of the same warp cannot
coordinate their accesses to locks as they can on the CPU (see Fig. 1(A)).

To prevent the possibility of deadlock and livelock, we use a ‘lock stealing’
algorithm which requires each thread be assigned a static priority. This allows a
thread with priority n to steal a lock which is currently owned by any thread with
a priority less than n (see Fig. 1(B)). As every thread has a unique priority, this
addresses the possibility of deadlock because any thread can always determine its
next action when encountering locked data. Livelock is also addressed as threads
will never attempt to perpetually steal one another’s locks.
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Fig. 1. Livelock and contention management in GPU transaction execution.

PR-STM implements a commit time locking approach where threads attempt
to acquire locks at the end of their transactions. Before committing, threads first
attempt to validate their transactions by tentatively ‘pre-locking’ shared data.
Pre-locked data can be stolen based on the thread priority rule. If validation is
successful the thread may commit its transaction. We implement invisible reads
and threads maintain versions of the data they have accessed so that they can
abort early if a conflict is detected. This has the benefit of reducing the costs
of false conflict where a thread needlessly aborts when encountering data locked
by a transaction which itself will abort in future.

2.2 Metadata

PR-STM consists of two types of metadata: a global metadata which is shared
among all threads and a local metadata which is private to a single thread:

– Global Lock Table. A lock table is required which should be accessible to all
GPU threads, hence it is located in global memory. Each word of shared data
is hashable to a unique lock in the global lock table. To enhance the scalability
of our system we can vary the number of words that are covered by a single
lock. When the hashing function has a 1:1 configuration, for instance, every
word of shared data has its own lock. While this configuration demands the
most memory it minimises the chance of a false conflict based on shared locks.
Each entry in the global lock table is an unsigned integer composed of version
(11 bits), owner (19 bits), locked (1 bit) and pre-locked (1 bit);

– Local Read Set is a set of read entries each composed of a memory location,
version and value read by the current thread;

– Local Write Set is a set of write entries recording the memory location and
value written by the current thread;
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– Local Lock Set is a set of lock indices and lock versions written by the current
thread. The use of lock versioning, along with thread priorities provides the
data required by our algorithm when a transaction wishes to perform lock
stealing.

2.3 STM Operations

PR-STM is comprised of several functions that are executed during significant
events during a transaction’s execution. Specifically: txStart, txRead, txWrite,
txValidate and txCommit. Algorithms 1 and 2 provide the pseudo code.

txStart is called before a thread begins or restarts a transaction. The function
initialises the thread’s local read, write and lock sets setting them to be empty
(line 1). The thread then sets a local abort flag to false (line 2).

txRead is executed whenever a thread attempts to read shared data from global
memory. The calling thread checks if the shared data is locked by another thread
(line 3) and if so the thread aborts and restarts its transaction (line 10). If the
data is not locked the thread checks to see if the data has already been added to
its local write set (line 4) and if so, returns the stored value (line 5). If the data
is not in the thread’s local write set it retrieves the value from global memory
(line 6) using an atomic read to ensure the value is up to date. The thread then
adds the value read to its local read set along with the atomically read lock
version corresponding to the shared data (lines 7–8) before it is returned.

txWrite records each write a thread wishes to make in its local write set . The
thread first checks if the data is already locked and if so sets its abort flag to
true indicating the transaction must abort and restart when the function returns
(line 19). If the data is not locked the thread checks if the data is already in its
local write set (line 14) and overwrites it. If the data has not been previously
written the thread creates a new write set entry (lines 15–18).

txValidate is invoked before the transaction can commit. The thread attempts
to lock all shared data that it intends to modify and performs validation of all
the shared data it has read. The thread invokes prelock on all data read/written
(line 20) to determine whether it has the highest priority value. Then the thread
validates all the data in its read set by checking that their versions have not
changed (lines 21–22). If validation is successful the thread will try to lock all
data (line 23). If this is successful then the thread can now commit its transac-
tion. If any of these steps fail, the transaction must abort.

txCommit is invoked only when a transaction has already successfully validated.
The thread writes to all global shared data in its local write set (line 26) and
executes a ‘thread fence’ (line 27). CUDA provides a thread fence function to
ensure memory values modified before the fence can be seen by all other threads.
Without a thread fence, the weak memory model of the GPU might cause a
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Algorithm 1. PR-STM functions
function txStart()

1 readSet ← writeSet ← lockTable ← ∅;
2 abort ← false;

function txRead(Address addr)
3 if getLockBit(g lock[hash(addr)]) = 0 then
4 if < addr, valWritten >∈ writeSet then
5 return valWritten ;

else
6 value ← atomicRead(addr);
7 version ← getVersion(atomicRead(g lock[hash(addr)]));
8 readSet ← readSet ∪ {< addr, value, version >};
9 return value;

else
10 abort ← true;
11 return 0;

function txWrite(Address addr, Value val)
12 if getLockBit(g lock[hash(addr)]) = 0 then
13 if < addr, valWritten >∈ writeSet then
14 < addr, valWritten >←< addr, val >;

else
15 idx ← hash(addr);
16 version ← getVersion(g lock[idx]);
17 writeSet ← writeSet ∪ {< addr, val >};
18 lockSet ← lockSet ∪ {< idx, version >}};

else
19 abort ← true;

function txValidate()
20 if tryPreLock() = true then
21 for all< addr, value, version >∈ readSet do
22 if getVersion(g lock[hash(addr)]) �= version then

return false;

23 return tryLock();

else
24 return false;

function txCommit()
25 for all < addr, val >∈ writeSet do
26 ∗addr ← val;

27 threadfence();
28 for all< idx, version >∈ lockSet do
29 if version < maxV ersion then
30 setVersion(g lock[idx], version + 1);

else
31 setVersion(g lock[idx], 0);

reordering of a thread’s instructions, which could lead to inconsistent shared
data. The thread fence ensures that modifications to shared data are visible to
all threads before any locks are released. The thread then updates the version
bit in the global lock table for each lock in its lock set. The version bit is either
incremented (line 30) or reset (line 31) if the version value has reached the
maximum value.
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Algorithm 2. PR-STM functions
function tryPreLock()

32 for all< idx, version >∈ lockSet do
33 repeat
34 tmpLockV al ← g lock[idx];
35 if getVersion(tmpLockVal) �= version
36 or getLockBit(tmpLockVal) = 1
37 or(getPreLockBit(tmpLockVal) = 1 and

getOwner(tmpLockVal) < threadIdx) then
38 releaseLocks();
39 return false;

40 preLockV al ← calcPreLockedVal(version, threadIdx);

until atomicCAS(g lock+idx,tmpLockVal,preLockVal) = tmpLockV al;

41 return true;

function tryLock()
42 for all< idx, version >∈ lockSet do
43 PreLockV al ← calcPreLockedVal(version, threadIdx);
44 FinalLockV al ← calcLockedVal(version);
45 if atomicCAS(g lock+idx,PreLockVal,FinalLockVal) �= PreLockV al then
46 releaseLocks();
47 return false;

48 return true;

function releaseLocks()
for all idx ∈ PreLocked do

49 preLockV al ← calcPreLockedVal(version, threadIdx);
50 atomicCAS(g lock+idx,preLockVal,preLockVal-1);

for all idx ∈ Locked do
51 unLockV al ← calcUnlockVal(version);
52 g lock[idx] ← unLockV al;

2.4 Contention Management Policy

In PR-STM, 32-bit memory words are used to represent locks. We use locks
for both protecting shared data and implementing our priority rule policy. The
various bits of each lock represent the following:

– The first 11 bits of a lock represent the current version of that lock. The version
is incremented whenever an update transaction is successfully committed.

– Bits 12–30 represent the priority of whichever thread has currently pre-locked
this lock (if such a thread exists). A lower value represents a higher priority.

– The 31st bit indicates whether this lock is pre-locked. Pre-locked locks may
be stolen from threads with lower priorities and acquired by threads of higher
priorities.

– The last bit represents whether the lock is currently locked. Once this bit is
set, no other threads can acquire this lock.

Algorithm 2 (lines 32–52) shows three required handlers which are used to
manage the locks:

tryPreLock is called whenever a thread attempts to pre-lock shared data. For
each lock in its local lock set, the thread checks whether the lock versions are
inconsistent (line 35) and whether the lock is unavailable (line 36). Finally, the
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thread checks whether the lock has been pre-locked by another thread with a
higher priority (line 37). If any of these conditions are true, then the thread
releases all locks it has previously pre-locked and aborts (line 39) otherwise the
thread attempts to pre-lock the lock using an atomic Compare and Swap (CAS).
If the CAS fails then another thread must have accessed the lock. The thread
must then repeat lines 35–37 until it aborts or the CAS succeeds and it has the
highest priority so far of all the threads attempting to pre lock this lock.

tryLock is called when a thread successfully pre-locks every lock in its local lock
set. The thread attempts to lock each pre-locked lock (line 45). If any CAS fails
then the lock has been stolen by a higher priority thread and the original thread
must then release all locks and abort (lines 46–47).

releaseLocks is called when a thread commits or aborts. All pre-locked/locked
locks are released. Pre-locked locks must be released by CAS (line 50) in case
the lock has been stolen by another thread.

3 Related Work

Although STM research on the GPU is a recent research area at the time of writ-
ing, numerous implementations of software transactions for the GPU have been
implemented. Cederman et al. [1], for instance, implemented the first STM on
the GPU that works at the granularity of a thread-block (rather than the gran-
ularity of individual threads). By using a relatively coarse ‘thread-block gran-
ularity’, Cederman’s technique avoids dependency violations between threads
within a single block. Although this reduces contention due to the typically high
thread numbers used on the GPU, it does not accommodate workloads more
appropriate for STM execution.

Xu et al. have implemented an approach called GPUSTM [19] which, like
PR-STM, operates at the granularity of the thread. GPUSTM implements an
approach based on a combination of timestamp-based and value-based valida-
tion called ‘hierarchical based validation’. Their validation technique requires
that locks are sorted whenever transactional reading takes place to avoid the
possibility of livelock. The static priority rule used by PR-STM on the other
hand avoids the need to sort locks (our threads are effectively pre-sorted by
their priorities instead).

Research has also been explored in providing Hardware Transactional Mem-
ory (HTM) for the GPU. In particular, Fung et al. [4,5] proposed a technique
using value based validation like Xu’s work but required significant modifications
to the GPU architecture. Nasre et al. have also described generic modifications to
improve the performance of morph algorithms with irregular access patterns [12],
and [11] explored GPU techniques to speed up execution by reducing the usage
of atomic operations.

More recently, Holey et al. have provided Lightweight Software Transactions
for the GPU [9]. Three variations of STM design are described, namely: ESTM
(eager), PSTM (pessimistic) and ISTM (invisible reads). ESTM updates shared
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memory during transaction execution while updating an undo log to remove
those updates upon an abort. PSTM is a simpler version of ESTM which treats
reads and writes in the same manner, hence PSTM is more effective where trans-
actions regularly read and write to the same shared data. Like our approach,
ISTM can represent invisible reads to reduce conflicts during a transaction. None
of Holey’s techniques allow for lock stealing based on thread priorities however.
While Holey’s work compares the performance of their algorithms with the CPU,
they employ basic fine-grain and coarse-grain locking benchmarks. To our knowl-
edge neither Holey’s work, nor any of the other techniques described compare
their performance with an actual STM implementation on the CPU.

4 Evaluation

In this section we present results from a series of benchmarks to demonstrate the
performance of our system. We compare the performance of PR-STM against a
recently developed STM system for the GPU called GPU-STM [19] and a widely
used STM system for the CPU called TinySTM [3]. The tests were carried out
on a desktop PC with Nvidia Fermi GPU (GeForce GTX 590) which has 16 SMs,
operates at a clock frequency of 1225 MHz and has access to 1.5 GB of GDDR5
memory. All shared data and the global lock table are allocated in global memory,
while all local meta-data is stored in local memory. The global lock table data
accessed the L2 cache, while local memory accessed both the L1 and L2 caches.
The CPU tests were carried out on 2 × dual-core 3.07 GHz Intel(R) processors
with 16 GB of RAM. We used the Windows 7 Operating System. TinySTM used
the Time Stamp Contention Management Policy [16] with the Eager Write Back
configuration (with invisible reads).

The experiments use a benchmark called bank which accompanies TinySTM.
A configurable array of bank accounts represents the shared data from which
transactions withdraw and deposit funds. We allocated 10 MB of memory to
create roughly 2.5 million accounts. We required many accounts to accommo-
date the presence of many more threads in the GPU. We found that this number
of accounts allowed us to observe the effects of both low and high contention as
we varied scenario parameters. We also added several adaptations to the base
scenario, most notably the ability to vary the amount of shared data accessed
within a transaction (i.e. the number of bank accounts). This allowed us to
vary the likelihood of contention caused by longer transactions. We also imple-
mented changes to the hashing function used in all three STM systems so that we
could control the amount of shared data covered by a single lock to experiment
with the degree of false-sharing. Finally, we included results where the number
of threads are increased to observe the contention caused by high numbers of
threads featured in GPU applications.

In the following graphs we present results where: (i) all threads perform
update transactions (i.e. read and write operations) and (ii) 20 % of the threads
in the scenario execute read-only transactions. This was included to observe
the impact of invisible reads on the scenario. Each test lasted for 5 s and was
executed 10 times with the average results presented.
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Fig. 2. Average throughput with increasing transaction size

4.1 Transaction Throughput

Figure 2 shows the degree of transaction throughput when the number of
accounts accessed per transaction is increased. The number of threads used
was kept constant at 512 threads for the GPU and 8 threads for the CPU.
These values were used as they provided the best performance in each system. In
Figs. 2(A) and (B), Y-axes show the number of transactions committed per sec-
ond and X-axes show the number of bank accounts accessed in each transaction.
As the GPU has many more threads than the CPU both PR-STM and GPU-
STM outperform TinySTM when the number of accessed accounts is low (below
16). As expected, when the transaction size increases the throughput of all three
STMs drops because inter-transaction conflicts are now more likely. The sharpest
drop in performance is witnessed in GPU-STM as the higher thread numbers
exacerbate the degree of conflicts. In the results with 20 % read only transactions
(Figs. 2(B) and (D)) throughput is marginally better. This is because fewer locks
are acquired and so fewer conflicts occur.

Figures. 2(C) and (D) show normalised throughput instead of the absolute
values shown in Figs. 2(A) and (B). This helps to differentiate the performance
when the transaction size increases beyond 16 accounts, where the values are
too close to read in absolute terms. Y-axes show the relative throughput of
PR-STM and TinySTM if we treat GPU-STM as 100 %. With more accounts
accessed we can see both PR-STM and TinySTM outperform GPU-STM. One
possible reason for this is that our algorithm does not have to sort the local lock
array at every read or write step (like GPU-STM ) while the higher number of
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Fig. 3. Average throughput with increasing lock coverage and increased threads

threads enjoyed by PR-STM remains a benefit to performance rather than a
hindrance.

4.2 STM Scalability

Figures. 3(A) and (B) show the degree of transaction throughput when the hash
function is modified. The hash function determines the number of accounts cov-
ered by a single lock; the lower the hash value the less chance that threads will
try to access the same lock when reading or writing to different shared data.
Both the number of threads used and the transaction size were kept constant
at 512(GPU)/8(CPU) and 128 respectively. Once again the Y axes show the
throughput in transactions per second and the X-axes show the hash function
value as the number of accounts covered by a single lock.

Figures 3(A) and (B) provide comparison between PR-STM, GPU-STM and
TinySTM with different hash values. As the hash value increases the perfor-
mance of TinySTM deteriorates due to the increased likelihood of false con-
flicts. Both PR-STM and GPU-STM, however, show increased throughput. This
is because PR-STM and GPU-STM can both take advantage of reduced lock-
querying (due to their lock-sets) and memory coalescing to reduce bus traffic
when querying the status of locks held. In Fig. 3(B), with 20 % read only threads,
performance is only slightly improved in all three techniques, but mostly in
TinySTM which gains the most benefit from invisible reads.

In Figs. 3(C) and (D), we increase the number of threads. In these two
graphs we only compare the performance of PR-STM and GPU-STM because
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TinySTM is limited by the relatively small number of threads afforded by the
CPU. Transaction throughput rises until 258 threads are used where inter-thread
conflicts begin to occur at a substantial rate. Below 258 threads, the possibility
of conflict is negligible because the high number of accounts used reduces the
probability that threads will access the same account. As the number of threads
increases, however, so too increases the rate of conflict and therefore the through-
put decreases markedly. As thread numbers increase, however, PR-STM begins
to improve once again, whereas GPU-STM levels out. The benefit of the work
produced by extra threads is cancelled out by the overhead caused by inter-
transactional contention. In Fig. 3(D) we can see that performance improves
marginally with the introduction of 20 % read only threads. All other factors
being equal, improvements in terms of read only transactions have little effect
on the GPU.

5 Conclusion

In this paper we have presented PR-STM, a new scalable STM technique for the
GPU which uses static thread ranking/priority to efficiently resolve contention
for shared locks. We have demonstrated the performance of our approach against
both GPU (GPU-STM ) and CPU (TinySTM ) software transactional memory
libraries which, to our knowledge, is the first time such testing has been done.
Results for transactional throughput and scalability demonstrate that our app-
roach performs better than both GPU-STM and TinySTM in almost all cases.

We believe there exists much scope for expanding our approach. In the short-
term we would like to enhance our Contention Management Policy to accom-
modate dynamic priorities and application semantics (this has been shown to
provide substantial performance improvements [17,18]). In the long-term we
would like to experiment with combining the GPU and the CPU within a hetero-
geneous transaction manager. The results suggest that the GPU is particularly
effective at processing large numbers of short transactions, while the presence
of read-only transactions provides only a small improvement to GPU perfor-
mance. Further testing will allow us to formulate transaction allocation strate-
gies, assigning work to either the CPU or the GPU based on the effectiveness of
each processing element to execute that work.
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