
Systematic Fusion of CUDA Kernels
for Iterative Sparse Linear System Solvers

José I. Aliaga(B), Joaqúın Pérez, and Enrique S. Quintana-Ort́ı

Dpto. de Ingenieŕıa y Ciencia de Computadores,
Universitat Jaume I, 12071 Castellón, Spain
{aliaga,joaquin.perez,quintana}@uji.es

Abstract. We introduce a systematic analysis in order to fuse CUDA
kernels arising in efficient iterative methods for the solution of sparse
linear systems. Our procedure characterizes the input and output vectors
of these methods, combining this information together with a dependency
analysis, in order to decide which kernels to merge. The experiments
on a recent NVIDIA “Kepler” GPU report significant gains, especially
in energy consumption, for the fused implementations derived from the
application of the methodology to three of the most popular Krylov
subspace solvers with/without preconditioning.

Keywords: Graphics processors · CUDA · Sparse linear systems · Iter-
ative solvers

1 Introduction

The solution of sparse linear systems [12] is an ubiquitous problem in ranking and
search methodologies for the web, boundary value problems and finite element
models for partial differential equations, economic modeling, and information
retrieval, among others. The interest of these applications has given rise to a very
large number of sophisticated sparse matrix storage layouts, libraries and algo-
rithms for general-purpose processors (CPUs); see, e.g., [1,7,8,15]. NVIDIA also
supports the solution of sparse linear systems on graphics processors (GPUs),
via the libraries CUBLAS and cuSPARSE, which respectively contain (CUDA)
GPU kernels operating on vectors and sparse matrices.

Despite the importance of energy consumption [9,11], few analyses of sparse
linear algebra operations focus on this metric [3]. One particular source of energy
inefficiency during the execution of an iterative solver [12] on a heterogeneous
CPU-GPU server is that, when implemented via calls to the GPU kernels in
CUBLAS/cuSPARSE, the CPU thread in control of the GPU repeatedly invokes
fine-grain CUDA kernels of low cost and, therefore, short duration. Even if the
solver avoids most data transfers between (the memories of) CPU and GPU,
this continuous stream of kernel calls often prevents the CPU from entering an
energy-efficient C-state. In [2] we introduced the fusion of GPU kernels as a

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 675–686, 2015.
DOI: 10.1007/978-3-662-48096-0 52



676 J.I. Aliaga et al.

means to avoid this power-hungry scenario, for the particular case of the con-
jugate gradient (CG) method [12]. The results in that work report significant
energy gains combined with a slight improvement in performance on a platform
equipped with an Intel i7-3770K plus an NVIDIA “Fermi” GTX480 board. In
this paper we make the following major contributions:

– We evolve [2] into a systematic analysis of the fusion of GPU kernels aris-
ing in a representative collection of sparse linear solvers: CG, BiCG and
BiCGStab [12], including Jacobi-based preconditioned versions of these.

– We include three alternative implementations (scalar CSR, 2-D vector CSR
and ELL [6]) for the sparse matrix-vector multiplication (SpMV), with differ-
ent properties/characterization which impact the possibilities of merging the
corresponding solvers.

– We experimentally demonstrate the benefits of kernel fusion in a platform
comprising an Intel Core i3770K plus an NVIDIA “Kepler” K20c GPU.

The rest of the paper is structured as follows. In Sect. 2 we briefly review
related work on the fusion of GPU kernels. In Sect. 3 we present the iterative
solvers targeted in our work, identifying the mathematical operations that are
implemented as CUDA kernels. Furthermore, we provide a systematic charac-
terization of these GPU kernels, defining the properties that allow the fusion of
two (or more) kernels. Finally, in Sects. 4 and 5 we respectively evaluate the new
merged iterative solvers and discuss the conclusions from this work.

2 Related Work

Kernel fusion has received considerable attention in the past as an optimization
technique via, e.g., increased memory locality, lower overhead by eliminating
multiple calls to kernels, and richer space for compiler optimizations. For brevity,
we next discuss a few efforts that specifically target fusion of GPU kernels.

In [10] the authors analyze how to fuse several types of CUDA kernels (map,
reduce, and combinations of these) corresponding to BLAS-1 and dense BLAS-
2 operations. Our work specifically targets iterative solvers for sparse linear
systems, and leads us to consider a richer set of operations, different from those
in [10]. Furthermore, we break the implementation of reduction kernels into two
stages so that one of them, which concentrates most of the computational work,
can still be fused.

In [14] the authors study the fusion of CUDA kernels with the purpose of
improving their power-energy efficiency by accommodating a higher and better
balanced utilization of the GPU cores. Three classes of fusions are identified in
their paper: “inner thread”, “inner thread block”, and “inter thread block”, and
their effects are simulated using two general benchmarks. Our fusions correspond
to the first class as, for the type of operations arising in sparse linear algebra,
this option yields a fair balance of the workload. Our approach differs in that we
focus on the type of kernel fusions arising in sparse linear algebra, we provide



Systematic Fusion of CUDA Kernels 677

a precise characterization of the kernels arising in this domain, and we offer
experimental performance and energy results.

In [13] the authors propose the fusion of CUDA kernels arising in iterative
sparse linear systems to improve performance, but only consider merging kernels
that provide the same functionality and have no dependencies among them. The
authors of [4] apply the techniques described in [2] to the iterative solution of
sparse linear systems via BiCGStab. None of these works provides a systematic
characterization of the GPU kernels and the conditions that allow their fusion.

3 Systematic Kernel Fusion for Sparse Iterative Solvers

3.1 Overview of Iterative Solvers for Sparse Linear Systems

Given a linear system Ax = b, where A ∈ R
n×n is sparse, b ∈ R

n contains the
independent terms, and x ∈ R

n is the sought-after solution, iterative projection
methods based on Krylov subspaces, in combination with an appropriate pre-
conditioner, often outperform the most efficient direct solvers available today in
terms of memory consumption and execution time [12].

Concerning the computational effort of iterative Krylov subspace methods,
in practical applications the cost of the iteration loop is dominated by one or two
SpMV involving A. Given a sparse matrix A with nz nonzero entries, in general
the cost of the SpMV is roughly 2nz floating-point arithmetic operations (flops).
Additionally, the loop body contains several vector operations that require O(n)
flops each.

Figure 1 offers an algorithmic description of the preconditioned BiCG method.
In general, we use Greek letters for scalars, lowercase for vectors and uppercase
for matrices. There, the user-defined parameter τmax sets an upper bound on
the relative residual for the computed approximation to the solution xj , and
(z1, z2) denotes the inner product (dot) of vectors z1, z2. The method involves
two SpMV as well as several BLAS-1 (vector) operations per iteration (axpy,
xpay and dot). The application of the Jacobi preconditioner matrix M requires
an element-wise product of two vectors.

The preconditioned BiCG method in Fig. 1 contains all the GPU kernels that
appear also in the preconditioned CG and BiCGStab. In the following section
we characterize these kernels from the point of view of the type of access they
perform to the data/results, we employ the preconditioned BiCG in order to
present the systematic fusion of GPU kernels, and we generalize these principles
to other variants of BiCG as well as other solvers.

3.2 Characterization of GPU Kernels for Sparse Iterative Solvers

A GPU kernel K performs a mapped access to a vector v if each thread of K
accesses one of the elements of v, independently of other threads, and the global
access is coalesced. We note that this property can be applied separately to the
kernel input and output vectors. For the specific kernels identified in the sparse



678 J.I. Aliaga et al.

A → M Compute Jacobi preconditioner
Initialize r0, r

∗
0 , p0, p

∗
0, x0, σ0, τ0; j := 0

while (τj > τmax) Loop for iterative solver
1. vj := Apj 1. SpMV
2. αj := σj/(vj , p

∗
j ) 2. dot

3. xj+1 := xj + αjpj 3. axpy
4. rj+1 := rj − αjvj 4. axpy
5. zj := M−1rj+1 5. JPred (Jacobi preconditioner)
6. v∗

j := AT p∗
j 6. SpMV

7. r∗
j+1 := r∗

j − αjv
∗
j 7. axpy

8. z∗
j := M−1r∗

j+1 8. JPred (Jacobi preconditioner)
9. ζj := (zj , r

∗
j+1) 9. dot

10. βj := ζj/σj 10. Scalar op
11. σj = ζj 11. Scalar op
12. pj+1 := zj + βjpj 12. xpay (axpy-like)
13. p∗

j+1 := z∗
j + βjp

∗
j 13. xpay (axpy-like)

14. τj+1 :=‖ rj+1 ‖2 14. Vector 2-norm (dot + sqrt)
j := j + 1

endwhile

Fig. 1. Algorithmic formulation of the preconditioned BiCG method.

Table 1. Types of access to the vector inputs/output of the GPU kernels.

Operation Input vector(s) Output vector

x y y

axpy y := αx + y mapped mapped mapped

xpay y := αy + x mapped mapped mapped

dot α := xT y = (x, y) mapped mapped unmapped

JPred y := M−1x – mapped mapped

SpMV scalar CSR y := Ax unmapped – mapped

SpMV vector CSR y := Ax unmapped – unmapped

SpMV ELL y := Ax unmapped – mapped

iterative solvers, we can then characterize their access types as shown in Table 1.
For SpMV, we consider three well-known kernels/implementations [6]: scalar
CSR, vector CSR and ELL.

3.3 Fusion of GPU Kernels

We first discuss two factors that may impact the performance that can be
attained by merging two GPU kernels:

Grid dimensionality (1D, 2D or 3D). For kernels that operate on vectors,
this parameter has little impact on the performance. Therefore, for simplicity,
a practical approach is to enforce the same dimensionality for both kernels
by, e.g., setting that to the highest one of the two kernels.



Systematic Fusion of CUDA Kernels 679

Grid dimensions (number of threads per block and number of blocks).
The approach here is, for simplicity, to enforce the same grid dimensions for
both kernels, and to set the dimensions to the largest values employed by any
of the two kernels. However, this must be done with care, as this parameter
may have a real effect on the performance of the kernels.

Fusing kernels is targeted to improve performance and/or energy consump-
tion, but obviously should produce the results of a non-fused execution. Let us
elaborate now the properties that two GPU kernels, namely K1 and K2, must
exhibit in order to participate in a fusion:

– In case K1 and K2 do not share any data (i.e., are independent), they can
always be merged.

– Consider that K1 produces an result or output vector v that is also an input
for K2, denoted hereafter as K1

v→ K2. (That is, there exists a read-after-write
or RAW data dependency between K1 and K2, dictated by the type and order
of shared access to vector v.) For the type of (dependent) kernels arising in
the sparse iterative solvers, the fusion is possible if K1/K2 perform a mapped
access to the output/input vector v. This guarantees that (i) both kernels
apply the same mapping of threads to the vector elements shared (exchanged)
via registers; (ii) both kernels apply the same mapping of thread blocks to
the vector elements shared (exchanged) via shared memory; and (iii) a global
barrier is not necessary between the two kernels.

From the characterization in Table 1, we easily derive that axpy, xpay and
JPred can be always merged with any other dependent kernel (one or more of
them) of the same sort (i.e., axpy, xpay and JPred). Also, the scalar CSR and
ELL versions of SpMV can be merged with any kernel of these three types that
consumes the vector resulting from the product, i.e., SpMV (scalar CSR, ELL)

y→
K2 ∈ {axpy,xpay,JPred} can be merged; but K1 ∈ {axpy,xpay,JPred} y→
SpMV cannot for any version of the sparse matrix-vector product.

The reduction kernel dot is a special case that needs a tailored implemen-
tation so that it can be efficiently merged in K1

y→ dot. Concretely, in [2] we
divided this kernel into two stages, say dotini and dotfin, with the first one being
implemented as a GPU kernel which performs the costly element-wise products
and subsequent reduction within a thread block, producing a partial result in
the form of a temporary vector with one entry per block. This is followed by
routine dotfin, which completes the operation by repeatedly reducing the con-
tents of this vector into a single scalar via a sequence of calls to GPU kernels.
The important aspect to note at this point is that, because the reduction pro-
ceeds within blocks, this initial stage of the reduction performs a mapped read of
the input vectors, and therefore can be efficiently merged in the sequence K1 ∈
{axpy,xpay,JPred,SpMV} y→ dotini. Routine dotfin is in practice imple-
mented as a sequence of GPU kernels with mapped/unmapped input/output;
see [2]. In consequence, this collection of kernels cannot be merged into a single
one themselves, and dotfin

y→ K2 cannot be fused.



680 J.I. Aliaga et al.

3.4 Fusions in BiCG

We next apply the previous fusion principles to the preconditioned BiCG with
SpMV based on the scalar CSR or ELL format, and we summarize the results
for the (2-D) vector CSR format and the non-preconditioned version.

The left-hand side graph in Fig. 2 identifies the dependencies (using arrows/
edges) between operations of the preconditioner BiCG, with the nodes and their
numeric labels identifying the operations within the loop body of the solver; see
Fig. 1. (For simplicity, we do not include the operations before the loop body
or the dependencies between different iterations.) As argued earlier, the dot
operations (2, 9 and 14) are partitioned into two stages (a or b, correspond-
ing respectively to kernel dotini and routine dotfin) in order to facilitate the
fusion of the first part, if possible, with a previous kernel. The node colors dis-
tinguish between the four different operation types: SpMV, dot, axpy/xpay
and JPred. The patterns on top and bottom of each node specify, respectively,
the type of mapping for the input and output vector(s) of each operation. Con-
cretely, the parallel lines correspond to a mapped operator and the chessboard
pattern an unmapped one. Operations 10 and 11 are special cases as they only
receive/produce (input/output) one scalar and are merged into a single node.

The right-hand side graph in Fig. 2 illustrates one specific fusion of kernels
among the several possibilities dictated by the kernel dependencies and the map-
pings of the input/output vectors. The fusions are encircled by thick lines and

Fig. 2. Dependencies between GPU kernels and fusions (left and right, respectively) for
the preconditioned BiCG solver with SpMV based on the scalar CSR or ELL format.



Systematic Fusion of CUDA Kernels 681

designate four macro-kernels: {1-2a}, {3-4-5-6-7-8-9a-14a}, {9b-10-11-14b},
{12-13}; plus a single-node (macro-)kernel: {2b}. The arrowless lines connect
groups of independent kernels (e.g., 3 and 4). For simplicity, we do not include all
the connections within a group. The arrows identify dependencies inside macro-
kernels (e.g., from 4 to 5) and between them (e.g., from {1-2a} to {2b}).

Our fused version of the preconditioned BiCG, when SpMV employs the
alternative vector CSR format (with unmapped input and output for SpMV),
differs from that in Fig. 2 in that the two matrix-vector operations (kernels 1
and 6) are merged together; in addition, due to the unmapped output of ker-
nel 1, kernel 2a becomes a single-node macro-kernel. The resulting macro-kernels
are therefore: {1-6}, {2a}, {2b}, {3-4-5-7-8-9a-14a}, {9b-10-11-14b} and
{12-13}. Also, for all variants of the BiCG solver (based on scalar CSR, vector
CSR and ELL SpMV), the fusion graphs of their non-preconditioned counter-
parts simply differ in that kernels 5 and 8, corresponding to the application of
the preconditioner, are not present.

These particular fusions were chosen following the fusion principles exposed
in this section and some general performance guidelines:

– The fusions can be decided by performing a systematic analysis of each ker-
nel, starting e.g. at 1, 2, etc., with those labeled with a higher number, tak-
ing into account the dependencies and the type of input/output (mapped or
unmapped). In general, the strategy is to reduce as much as possible the total
number of macro-kernels, in order to avoid the associated performance and
energy overheads. For the preconditioned BiCG, the right-hand side graph in
Fig. 2 presents the minimum number of macro-kernels due to the restrictions
imposed by the unmapped output vectors of the three dot operations (2a/b,
9a/b and 14a/b). We note that 10+11 could have been instead merged with
{12-13} but we selected the first option for performance reasons.

– The dependencies between operations within the same macro-kernel specify a
partial order for their execution. In principle, independent kernels are merged
by integrating their instructions into a single code one after another. As an
exception, for performance reasons, when the initial or final stages of two
independent dot operations are merged together into a single macro-kernel
(e.g., 9a with 14a; and also 9b with 14b), their instructions are interleaved in
the code. (Interleaving of multiple dot operations was proposed in [4].)

– Alternatively, 6 can be merged with {1-2a}, but this option was discarded
because, for the scalar CSR and ELL implementations of SpMV, the result
attained lower performance.

3.5 Fusions in CG and BiCGStab

Figure 3 presents the fusion graphs for the preconditioned versions of CG and
BiCGStab1 when SpMV is based on the scalar CSR or ELL format. For the
CG solver, the only difference when SpMV employs the vector CSR format
1 For BiCGStab, nodes 7 and 12 of the graph actually embed two dependent operations

of type axpy/xpay each. For brevity, they are represented with a single node each.



682 J.I. Aliaga et al.

Fig. 3. Fusions of GPU kernels in the preconditioned CG and BiCGStab solvers (left
and right, respectively) with SpMV based on the scalar CSR or ELL format. The colors
of the nodes match those employed for the preconditioned BiCG solver, and identify
the same four types of operations: SpMV, dot, axpy/xpay and JPred.

is that kernels 1 and 2a become two separate single-node macro-kernels. The
same applies to the two SpMV in BiCGStab, i.e. kernels 1 and 5, which become
an isolated macro-kernel each. As in the BiCG solver, the non-preconditioned
versions of CG and BiCGStab differ in that the nodes corresponding to the
preconditioner application (5 for the former and 4, 13 in the latter) disappear.

The graphs in Fig. 3 contain the minimum number of macro-kernels. Due to
stricter dependencies of CG and BiCGStab compared with BiCG, the number
of alternative fusions in the former two is reduced to instead joining 7+8 with 9
in CG, and 10+11 with 12-13 in BiCGStab.

In summary, the study of this collection of cases (three solvers, with and
without preconditioner, and three different implementations of SpMV) exposes
that, for the type of operations involved in these iterative solvers, the two stages
of the dot operations act as barriers (or synchronization points), enforcing a
particular fusion/division of the macro-kernels.

4 Experimental Evaluation

In this section we evaluate the performance and energy gains of the merged solvers,
comparing them with non-fused counterparts. For this purpose, we employ several
sparse matrices from the University of Florida Matrix Collection (UFMC)2 and a
difference discretization of the 3D Laplace problem; see Table 2. The coefficient
2 http://www.cise.ufl.edu/research/sparse/matrices/.

http://www.cise.ufl.edu/research/sparse/matrices/


Systematic Fusion of CUDA Kernels 683

Table 2. Description and properties of the test matrices from the UFMC (left) and
the 3D Laplace problem (right). In the matrix names, fem 3dth2 corresponds to the
“FEM 3D nonlinear thermal problem”.

Matrix nz n nz/n

bmwcra1 1 10,641,602 148,770 71.53
crankseg 2 14,148,858 63,838 221.63
F1 26,837,113 343,791 78.06
inline 1 38,816,170 503,712 77.06
ldoor 42,493,817 952,203 44.62
audikw 1 77,651,847 943,645 82.28
fem 3dth2 3,489,300 147,900 23.59

Matrix nz n nz/n

A100 6,940,000 1,000,000 6.94
A126 13,907,370 2,000,376 6.94
A159 27,986,067 4,019,679 6.94
A200 55,760,000 8,000,000 6.94
A252 111,640,032 16,003,001 6.94

matrix A for audikw 1 and inline 1 is too large to be stored in the ELL format
and these combinations of matrix case/storage format are excluded from the
evaluation. Moreover, A is unsymmetric for fem 3dth2 and, therefore, cannot
be tackled via the CG solver. For all cases, the solution vector was chosen to
have all entries equal 1, and the independent vector was set to b = Ax. The
iterative solvers were initialized with the starting guess x0 = 0. All experiments
were done using ieee single precision (SP) arithmetic. While the use of double
precision (DP) arithmetic is in general mandatory for the solution of sparse linear
systems, the use of mixed SP-DP in combination with iterative refinement leads
to improved execution time and energy consumption when the target platform
is a GPU accelerator [5].

The target architecture is a Linux server (CentOS release 6.2 with kernel
2.6.32) equipped with a single Intel Core i7-3770K CPU (3.5 GHz, four cores)
and 16 Gbytes of DDR3 RAM, connected via a PCI-e 2.0 bus to an NVIDIA
“Kepler” K20c GPU (compute capability 3.5, 706 MHz, 2,496 CUDA cores) with
5 GB of GDDR5 RAM integrated into the accelerator board. Power was collected
using a National Instruments (NI) Data Acquisition System, composed of the
NI9205 module and the NIcDAQ-9178 chassis, and plugged to the lines that
connect the output of the power supply unit with motherboard and GPU.

In total, we evaluated CG, BiCG and BiCGStab, with and without precon-
ditioning, using three different implementations of SpMV (scalar CSR, vector
CSR and ELL), and five different versions of each solver:

– cublasL is a plain version of the solver implemented via calls to CUBLAS
kernels from the legacy programming interface of this library, combined with
ad-hoc implementations of SpMV. In this version, one or more scalars may be
transferred between the main memory and the GPU memory address space
each time a kernel is invoked and/or its execution is completed.

– cublasN is an evolved version of the previous implementation that, whenever
possible, maintains the scalars in the GPU memory (via the new interface
of CUBLAS), in order to avoid unnecessary communication/synchronization
between CPU and GPU.

– cuda replaces the CUBLAS (vector) kernels in the previous version by our
ad-hoc implementations, including the two-stage dot.

– merge applies the fusions described in Sect. 3.



684 J.I. Aliaga et al.

CUDA synchronization mode

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

CG

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

CUDA synchronization mode

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

Preconditioned CG

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

CUDA synchronization mode

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

BiCG

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

CUDA synchronization mode

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

Preconditioned BiCG

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

CUDA synchronization mode

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

BiCGStab

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

CUDA synchronization mode

polling blocking polling blocking polling blocking polling blocking

polling blocking polling blocking polling blocking polling blocking

polling blocking polling blocking polling blocking polling blocking

V
ar

ia
tio

n 
w

.r
.t.

 C
U

B
LA

S
L-

po
lli

ng
 (

%
)

-20

-15

-10

-5

0

5

10

15

Time Energy

Preconditioned BiCGStab

CUBLASL
CUBLASN
CUDA
MERGE
MERGE10

Fig. 4. Execution time and energy consumption for CG, BiCG and BiCGStab solvers
(top, middle and bottom, resp.) without and with preconditioner (left and right, resp.).

– merge 10 applies the fusions as well and, in addition, only checks the conver-
gence every 10 iterations of the solver, thus reducing the amount of synchro-
nizations between CPU and GPU due to the evaluation of this test.

In review, there are 3 solvers, 2 preconditioning modes, 3 implementations of
SpMV, and 5 versions of the solver; i.e., 90 combinations. Furthermore, we
execute these configurations under the polling and blocking CUDA synchroniza-
tion modes, and evaluate them for 12 test matrices (11 for CG), collecting the
time and energy per iteration for each scenario. In order to reduce the number of
results to show, (i) we report the variations in time/energy of the different imple-
mentations with respect to cublasL executed in polling mode; (ii) in addition,
we summarize the results for the matrix test cases into a single average value,
giving the same weight to all of matrix tests; and (iii) finally, we consider only



Systematic Fusion of CUDA Kernels 685

the vector CSR implementation of SpMV for the UFMC cases and the ELL
variant for the Laplace problems since our experiments showed that these are
the best options from the point of view of performance.

With these considerations, Fig. 4 reports the time and energy variations for
three solvers (CG, BiCG, BiCGStab) with/without preconditioning and five ver-
sions of each (cublasL, cublasN, cuda, merge, merge 10), executed under
two different synchronization modes (polling and blocking).

The first aspect to note is that all plots in Fig. 4 reflect the same qualitative
trend, independently of the specific solver and whether or not the preconditioner
is present. Let us consider, e.g., the top-left plot (CG solver without precondi-
tioner). Compared with the baseline case (cublasL executed in polling mode),
the two non-fused versions cublasN and cuda only experience a slight increase
in both time and energy (around 1 % and 2 %, resp.) when operating under
the polling mode. For the alternative blocking mode, these versions present an
appealing reduction of the energy consumption (above 9 %), but unfortunately
this comes at the cost of a more visible performance penalty (a time increase
superior to 6 %). The desired combination (reduction in both time and energy)
is attained by the merged versions (merge and merge 10). Both algorithms
report a decrease of execution time superior to 5 %, except for merge executed
in blocking mode, for which the variation of time is negligible. The best com-
bination is clearly merge 10, which combines this reduction of time with a
remarkable decrease of energy consumption, superior to 15 %.

In general, the best option is to employ merge 10 executed in blocking mode.
Compared with the baseline case, the reduction in time for all solvers and precon-
ditioning modes is between 5.1 % and 10.2 %, while from the energy perspective
the savings vary between 4.0 % and 20.0 %. Comparing merge 10 with the same
implementation executed in polling mode, the blocking mode basically matches
its performance (around the same execution time) while producing higher energy
gains, especially for CG and BiCGStab.

5 Concluding Remarks

We have introduced and applied a systematic methodology to derive fused ver-
sions of three popular iterative solvers (with and without preconditoning) for
sparse linear systems. An analysis of the type of access that the threads in charge
of a kernel’s execution perform on the kernel inputs and outputs, together with
the observation of the data dependencies between kernels, determine the can-
didates to be fused. For performance and energy efficiency reasons, the general
goal is to minimize the number of macro-kernels that results from the applica-
tion of the fusions. From this point of view, we obtain reductions from 10→5,
13→5 and 14→8 for the preconditioned versions of CG, BiCG and BiCGStab,
respectively. The gains are experimentally demonstrated on a recent CPU-GPU
architecture, consisting of an Intel “Sandy-Bridge” multicore processor and an
NVIDIA “Kepler” GPU. Compared with plain versions of the solvers based
on CUBLAS and ad-hoc implementations of SpMV, the fused versions attain



686 J.I. Aliaga et al.

remarkable energy savings when executed in blocking mode. Furthermore, in
general they match the performance of an execution of the same versions when
executed in the performance-active but power-hungrier polling mode.

Acknowledgements. This research was supported by projects EU FP7 318793 (Exa2
Green) and TIN2011-23283 of the Ministerio de Economı́a y Competitividad and EU
FEDER. We thank Hartwig Anzt from the University of Tennessee for his comments.

References

1. CSB library (2014), http://gauss.cs.ucsb.edu/aydin/csb/html/
2. Aliaga, J.I., Pérez, J., Quintana-Ort́ı, E.S., Anzt, H.: Reformulated conjugate gra-

dient for the energy-aware solution of linear systems on GPUs. In: 42nd Interna-
tional Conference on Parallel Processing (ICPP), pp. 320–329 (2013)

3. Aliaga, J.I., et al.: Unveiling the performance-energy trade-off in iterative linear
system solvers for multithreaded processors. Concurrency and Computation: Prac-
tice and Experience (2014, to appear)

4. Anzt, H., Sawyer, W., Tomov, S., Luszczek, P., Yamazaki, I., Dongarra, J.: Opti-
mizing Krylov subspace solvers on graphics processing units. In: IEEE Interna-
tional Parallel Distributed Processing Symposium Workshops (IPDPSW), pp. 941–
949 (2014)

5. Anzt, H., et al.: Analysis and optimization of power consumption in the itera-
tive solution of sparse linear systems on multi-core and many-core platforms. In:
International Green Computing Conference Workshops (IGCC), pp. 1–6 (2011)

6. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical report NVR-2008-004, NVIDIA Corp., December 2008

7. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded
algorithms for sparse matrix-vector multiplication. In: IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 721–733 (2011)

8. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: ACM SIGPLAN Symposium Principles and Practice
of Parallel Programming (PPoPP), vol. 45, pp. 115–126 (2010)

9. Duranton, M., et al.: HiPEAC vision 2015. High performance and embedded archi-
tecture and compilation (2015). http://www.hipeac.net/vision

10. Filipovic, J., Madzin, M., Fousek, J., Matyska, L.: Optimizing CUDA code by
kernel fusion–application on BLAS. Computing Research Repository (CoRR)
abs/1305.1183 (2013). http://arxiv.org/abs/1305.1183

11. Fuller, S.H., Millett, L.I.: The Future of Computing Performance: Game Over or
Next Level? National Research Council of the National Academies (2011)

12. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
13. Tabik, S., Ortega, G., Garzón, E.: Performance evaluation of kernel fusion BLAS

routines on the GPU: iterative solvers as case study. J. Supercomputing 70(2),
577–587 (2014)

14. Wang, G., Lin, Y., Yi, W.: Kernel fusion: An effective method for better power effi-
ciency on multithreaded GPU. In: Green Computing and Communications (Green-
Com), pp. 344–350 (2010)

15. Williams, S., Bell, N., Choi, J., Garland, M., Oliker, L., Vuduc, R.: Sparse matrix
vector multiplication on multicore and accelerator systems. In: Kurzak, J., Bader,
D.A., Dongarra, J. (eds.) Scientific Computing with Multicore Processors and
Accelerators. CRC Press (2010)

http://gauss.cs.ucsb.edu/aydin/csb/html/
http://www.hipeac.net/vision
http://arxiv.org/abs/1305.1183

	Systematic Fusion of CUDA Kernels for Iterative Sparse Linear System Solvers
	1 Introduction
	2 Related Work
	3 Systematic Kernel Fusion for Sparse Iterative Solvers
	3.1 Overview of Iterative Solvers for Sparse Linear Systems
	3.2 Characterization of GPU Kernels for Sparse Iterative Solvers
	3.3 Fusion of GPU Kernels
	3.4 Fusions in BiCG
	3.5 Fusions in CG and BiCGStab

	4 Experimental Evaluation
	5 Concluding Remarks
	References


