Abstract
Traditionally, the merit of a rearrangement scenario between two genomes has been measured based on a parsimony criteria alone; two scenarios with the same number of rearrangements are considered equally good. In this paper, we acknowledge that each rearrangement has a certain likelihood of occurring based on biological constraints, e.g. physical proximity of the DNA segments implicated, or repetitive sequences. Accordingly, we propose optimization problems with the objective of maximizing overall likelihood, by weighting the rearrangements. We study a binary weight function suitable to the representation of sets of genome positions that are most likely to have swapped adjacencies. We give a polynomial-time algorithm for the problem of finding a minimum weight double cut and join (DCJ) scenario among all minimum length scenarios. In the process, we solve an optimization problem on colored noncrossing partitions which is a generalization of the Maximum Independent Set problem on circle graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aganezov, S., Alekseyev, M.: On pairwise distances and median score of three genomes under DCJ. BMC Bioinform. 13(suppl. 19), S1 (2012)
Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Skiena, S., Swidan, F.: Improved bounds on sorting by length-weighted reversals. J. Comput. Syst. Sci. 74(5), 744–774 (2008)
Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)
Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 78–89. Springer, Heidelberg (2010)
Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172(1), GC11–GC17 (1996)
Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance for non-trivial genomes cannot be approximated. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009)
Braga, M.D.V., Stoye, J.: The solution space of sorting by DCJ. J. Comput. Biol. 17(9), 1145–1165 (2010)
Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398), 376–380 (2012)
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A., Noble, W.S.: A three-dimensional model of the yeast genome. Nature 465(7296), 363–367 (2010)
Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)
Galvão, G.R., Dias, Z.: Approximation algorithms for sorting by signed short reversals. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 360–369. ACM (2014)
Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)
Haghighi, M., Sankoff, D.: Medians seek the corners, and other conjectures. BMC Bioinform. 13(suppl. 19), S5 (2012)
Jiang, M.: The zero exemplar distance problem. J. Comput. Biol. 18(9), 1077–1086 (2011)
Jones, B.R., Rajaraman, A., Tannier, E., Chauve, C.: Anges: reconstructing ancestral genomes maps. Bioinformatics 28(18), 2388–2390 (2012)
Le, T.B.K., Imakaev, M.V., Mirny, L.A., Laub, M.T.: High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342(6159), 731–734 (2013)
Lefebvre, J.-F., El-Mabrouk, N., Tillier, E.R.M., Sankoff, D.: Detection and validation of single gene inversions. In: Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology (ISMB 2003). Bioinformatics, vol. 19, pp. i190–i196. Oxford University Press (2003)
Nash, N., Gregg, D.: An output sensitive algorithm for computing a maximum independent set of a circle graph. Inform. Process. Lett. 110(16), 630–634 (2010)
Ouangraoua, A., Bergeron, A.: Combinatorial structure of genome rearrangements scenarios. J. Comput. Biol. 17(9), 1129–1144 (2010)
Ouangraoua, A., Tannier, E., Chauve, C.: Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 27(19), 2664–2671 (2011)
Pinter, R.Y., Skiena, S.: Genomic sorting with length-weighted reversals. Genome Inform. 13, 103–111 (2002)
Rajan, V., Xu, A.W., Lin, Y., Swenson, K.M., Moret, B.M.E.: Heuristics for the inversion median problem. BMC Bioinform. 11(suppl. 1), 54 (2010)
Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., Cavalli, G.: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3), 458–472 (2012)
Swenson, K.M., Blanchette, M.: Large-scale mammalian rearrangements preserve chromatin conformation (2015) (in preparation)
Valiente, G.: A new simple algorithm for the maximum-weight independent set problem on circle graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 129–137. Springer, Heidelberg (2003)
Veron, A., Lemaitre, C., Gautier, C., Lacroix, V., Sagot, M.-F.: Close 3d proximity of evolutionary breakpoints argues for the notion of spatial synteny. BMC Genom. 12(1), 303 (2011)
Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)
Zhang, Y., McCord, R.P., Ho, Y.-J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., Dekker, J.: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148(5), 908–921 (2012)
Acknowledgments
We would like to thank Anne Bergeron for her helpful comments during the preparation of this manuscript. This work was funded in part by a grant from the Fonds de Recherche du Québec en Nature et Technologies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Swenson, K.M., Blanchette, M. (2015). Models and Algorithms for Genome Rearrangement with Positional Constraints. In: Pop, M., Touzet, H. (eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in Computer Science(), vol 9289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48221-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-48221-6_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48220-9
Online ISBN: 978-3-662-48221-6
eBook Packages: Computer ScienceComputer Science (R0)