Skip to main content

A Sub-quadratic Time and Space Complexity Solution for the Dated Tree Reconciliation Problem for Select Tree Topologies

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9289))

Included in the following conference series:

Abstract

Recently coevolutionary analysis has turned to tree topology, specifically the unbalanced nature of evolutionary trees, as a means to reduce the asymptotic complexity associated with inferring coevolutionary interrelationships that exist between organismal trees. The leveraging of tree topology for coevolutionary analysis has been shown to be highly successful, with one recent result demonstrating a logarithmic space complexity reduction for the dated tree reconciliation problem. In this work we build on this prior result providing a reduced complexity bound by applying a new model to construct the dynamic programming table. The new complexity bound is the first sub quadratic running time solution for the dated tree reconciliation problem for selected tree topologies and is shown to be, in practice, the fastest method for solving the dated tree reconciliation problem for expected evolutionary trees. Our theoretical results are then validated using a combination of synthetic and biological data with our proposed model shown to save almost \(O(\sqrt{n})\) space while finishing in half the time compared to existing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steel, M., McKenzie, A.: Properties of phylogenetic trees generated by Yule-type speciation models. Math. Biosci. 170(1), 91–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yule, G.U.: A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Charact. 213, 21–87 (1924)

    Article  Google Scholar 

  3. Harding, E.: The probabilities of rooted tree-shapes generated by random bifurcation. Adv. Appl. Probab. 3(1), 44–77 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rosen, D.E.: Vicariant patterns and historical explanation in biogeography. Syst. Biol. 27(2), 159–188 (1978)

    Google Scholar 

  5. Drinkwater, B., Charleston, M.A.: A time and space complexity reduction for coevolutionary analysis of trees generated under both a Yule and Uniform model. Comput. Biol. Chem. 57, 61–71 (2015)

    Article  MathSciNet  Google Scholar 

  6. Aldous, D.J.: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Statist. Sci. 16, 23–34 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Libeskind-Hadas, R., Charleston, M.: On the computational complexity of the reticulate cophylogeny reconstruction problem. J. Comput. Biol. 16(1), 105–117 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ronquist, F.: Reconstructing the history of host-parasite associations using generalised parsimony. Cladistics 11(1), 73–89 (1995)

    Article  Google Scholar 

  9. Libeskind-Hadas, R., Wu, Y.C., Bansal, M.S., Kellis, M.: Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 30(12), i87–i95 (2014)

    Article  Google Scholar 

  10. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)

    Article  Google Scholar 

  11. Drinkwater, B., Charleston, M.A.: An improved node mapping algorithm for the cophylogeny reconstruction problem. Coevolution 2(1), 1–17 (2014)

    Article  Google Scholar 

  12. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)

    Article  MathSciNet  Google Scholar 

  13. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinform. 11(Suppl 1), S60 (2010)

    Article  Google Scholar 

  14. Doyon, J.P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Briefings Bioinform. 12(5), 392–400 (2011)

    Article  Google Scholar 

  15. Drinkwater, B., Charleston, M.A.: Introducing TreeCollapse: a novel greedy algorithm to solve the cophylogeny reconstruction problem. BMC Bioinform. 15(Suppl 16), S14 (2014)

    Article  Google Scholar 

  16. Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G., Worm, B.: How many species are there on Earth and in the Ocean? PLoS Biol. 9(8), e1001127 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Postgraduate Award and William and Catherine Mcllrath Scholarship awarded to BD. We would also like to thank Nicolas Wieseke for his assistance with generating the synthetic data used in this analysis, along with Anastasios Viglas for his guidance with the asymptotic complexity analysis performed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Drinkwater .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof for Theorem 2

Proof

To infer the worst case space complexity required to solve the dated tree reconciliation problem for coevolutionary systems composed by phylogenetic trees produced under an expected Yule model requires that the set of geometric series defined in Eq.  (9) be simplified. To do this we let the worst case asymptotic complexity defined in Eq. (9) be redefined as a function \(\alpha (n)\):

$$\begin{aligned} \alpha (n) = n + n \sum \limits _{i=1}^{\lfloor {\lg {(n+ 2)}}\rfloor -1} \frac{2^{(i-1)}(5 \times 2^{(i-1)}-2)}{3^{i}} + n^2 \sum \limits _{i=\lfloor {\lg {(n+ 2)}}\rfloor }^{n-1} \frac{2^{(i-1)}}{3^{i}} \end{aligned}$$
(13)

which may be simplified as follows:

$$\begin{aligned} \alpha (n)&= n+n \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \frac{2^{(i-1)}(5 \times 2^{(i-1)}-2)}{3^{i}} + n^2 \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \frac{2^{(i-1)}}{3^{i}} \\&= n+n \Bigg ( \frac{5}{4} \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \bigg (\frac{4}{3}\bigg )^i - \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \bigg (\frac{2}{3}\bigg )^i + \frac{n}{2} \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \bigg (\frac{2}{3}\bigg )^i\Bigg )\\&< n+n \Bigg ( \frac{5}{4} \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \bigg (\frac{4}{3}\bigg )^i + \frac{n}{2} \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \bigg (\frac{2}{3}\bigg )^i\Bigg )\\&= n+n \Bigg ( \frac{5}{4} \times \bigg (\frac{\frac{4}{3} - \frac{4}{3}^{\lfloor {\lg {(n+2)}}}\rfloor }{1 - \frac{4}{3}}\bigg ) + \frac{n}{2} \times \bigg ( \frac{ \big (\frac{2}{3}\big )^{\lfloor {\lg {(n+2)}}\rfloor } - \big (\frac{2}{3}\big )^{n}}{1 - \frac{2}{3}} \bigg )\Bigg ) \\&= n+n \Bigg ( \frac{15}{4} \times \bigg (\frac{4}{3}^{\lfloor {\lg {(n+2)}}\rfloor } -\frac{4}{3}\bigg ) + \frac{3n}{2} \times \bigg (\frac{2}{3}^{\lfloor {\lg {(n+2)}}\rfloor } -\bigg (\frac{2}{3}\bigg )^{n}\bigg ) \Bigg ) \\&\le n+n \Bigg ( \frac{15}{4} \times \bigg (\frac{4}{3}^{(\lg {(n+2)})} -\frac{4}{3}\bigg ) + \frac{3n}{2} \times \bigg (\frac{2}{3}^{(\lg {(n+2)})} - \bigg (\frac{2}{3}\bigg )^{n}\bigg ) \Bigg ) \end{aligned}$$
$$\begin{aligned}&= n+n \Bigg ( \frac{15}{4} \times \frac{4}{3}^{(\lg {(n+2)})} + \frac{3n}{2} \times \frac{2}{3}^{(\lg {(n+2)})} - n \times \bigg (\frac{2}{3}\bigg )^{n-1} -5 \Bigg )\\&< n+n \Bigg ( \frac{15}{4} \times \frac{4}{3}^{(\lg {(n+2)})} + \frac{3n}{2} \times \frac{2}{3}^{(\lg {(n+2)})} \Bigg ) \\&= n+n \Bigg ( \frac{15}{4} \times (n+2)^{(2-\lg {3})} + \frac{3n}{2} \times (n+2)^{(1-\lg {3})} \Bigg ) \nonumber \\&\approx n \times n^{(2-\lg {3})}\\&\approx n^{1.42}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (14) \end{aligned}$$

Appendix B: Proof for Theorem 3

Proof

To infer the worst case space complexity required to solve the dated tree reconciliation problem for coevolutionary systems composed by phylogenetic trees produced under an expected Uniform model requires that the set of geometric series defined in Eq. (10) be simplified. To do this we let the worst case asymptotic complexity defined in Eq. (10) be redefined as a function \(\beta (n)\):

$$\begin{aligned} \beta (n) = n + n \sum \limits _{i=1}^{\lfloor {\lg {(n+ 2)}}\rfloor -1} \frac{3^{(i-1)}(5 \times 2^{(i-1)}-2)}{4^{i}} + n^2 \sum \limits _{i=\lfloor {\lg {(n+ 2)}}\rfloor }^{n-1} \frac{3^{(i-1)}}{4^{i}} \end{aligned}$$
(15)

which may be simplified as follows:

$$\begin{aligned} \beta (n)&= n+n \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \frac{3^{(i-1)}(5 \times 2^{(i-1)}-2)}{4^{i}} + n^2 \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \frac{3^{(i-1)}}{4^{i}} \\&{=} n{+}n \Bigg ( \frac{5}{6} \sum \limits _{i{=}1}^{\lfloor {\lg {(n{+}2)}}\rfloor -1} \bigg (\frac{3^i \times 2^i}{2^i \times 2^i}\bigg ){-}\frac{2}{3}\sum \limits _{i{=}1}^{\lfloor {\lg {(n{+}2)}}\rfloor -1} \bigg (\frac{3}{4}\bigg )^i {+} \frac{n}{3} \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \bigg (\frac{3}{4}\bigg )^i\Bigg ) \\&< n+n \Bigg ( \frac{5}{6} \sum \limits _{i=1}^{\lfloor {\lg {(n+2)}}\rfloor -1} \bigg (\frac{3}{2}\bigg )^i + \frac{n}{3} \sum \limits _{i=\lfloor {\lg {(n+2)}}\rfloor }^{n-1} \bigg (\frac{3}{4}\bigg )^i\Bigg ) \\&= n+n \Bigg ( \frac{5}{6} \times \bigg (\frac{\frac{3}{2} - \frac{3}{2}^{\lfloor {\lg {(n+2)}}}\rfloor }{1 - \frac{3}{2}}\bigg ) + \frac{n}{3} \times \bigg ( \frac{ \big (\frac{3}{4}\big )^{\lfloor {\lg {(n+2)}}\rfloor } - \big (\frac{3}{4}\big )^{n}}{1 - \frac{3}{4}} \bigg )\Bigg ) \\&= n+n \Bigg ( \frac{5}{3} \times \bigg (\frac{3}{2}^{\lfloor {\lg {(n+2)}}\rfloor } -\frac{3}{2}\bigg ) + \frac{4n}{3} \times \bigg (\frac{3}{4}^{\lfloor {\lg {(n+2)}}\rfloor } -\bigg (\frac{3}{4}\bigg )^{n}\bigg ) \Bigg )\\&\le n+n \Bigg ( \frac{5}{3} \times \bigg (\frac{3}{2}^{(\lg {(n+2)})} -\frac{3}{2}\bigg ) + \frac{4n}{3} \times \bigg (\frac{3}{4}^{(\lg {(n+2)})} - \bigg (\frac{3}{4}\bigg )^{n}\bigg ) \Bigg ) \end{aligned}$$
$$\begin{aligned}&= n+n \Bigg ( \frac{5}{3} \times \frac{3}{2}^{(\lg {(n+2)})} + \frac{4n}{3} \times \frac{3}{4}^{(\lg {(n+2)})} - n \times \bigg (\frac{3}{4}\bigg )^{(n-1)} -\frac{5}{2} \Bigg ) \\&< n+n \Bigg ( \frac{5}{3} \times \frac{3}{2}^{(\lg {(n+2)})} + \frac{4n}{3} \times \frac{3}{4}^{(\lg {(n+2)})} \Bigg ) \\&= n+n \Bigg ( \frac{5}{3} \times (n+2)^{(\lg {3}-1)} + \frac{4n}{3} \times (n+2)^{(\lg {3}-2)} \Bigg ) \nonumber \\&\approx n \times n^{(\lg {3}-1)} \\&\approx n^{1.58}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (16) \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drinkwater, B., Charleston, M.A. (2015). A Sub-quadratic Time and Space Complexity Solution for the Dated Tree Reconciliation Problem for Select Tree Topologies. In: Pop, M., Touzet, H. (eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in Computer Science(), vol 9289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48221-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48221-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48220-9

  • Online ISBN: 978-3-662-48221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics