Skip to main content

The Smell Network

  • Conference paper
  • First Online:
Multidisciplinary Social Networks Research (MISNC 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 540))

Included in the following conference series:

  • 1715 Accesses

Abstract

The smell of a molecule is subjective, because there is a variablity in its representative language. The reporting is done according to the vocabulary repertoire of human subjects and researchers concerned. The olfactory databases thus consist of molecules and their smell characteristics defined by words. In this paper, we have demonstrated a network based approach based on the words to understand the perceptual universe. We defined perceptual communities based on the normalized co-occurrence network and hence propose the perceptual classes. We find the characteristics of this perceptual social network. We have also proposed a generative LDA-based topic modeling approach for topic detection in olfactory databases. This is for the first time that an objective approach to defining perceptual classes has been carried out which confirms with many subjective analyses that has been done till now. This work may open new avenues towards understanding the relationship between language and olfaction besides objectively defining perceptual classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, Y.-Y., Ahnert, S.E., Bagrow, J.P., Barabási, A.-L.: Flavor network and the principles of food pairing. Sci. Rep. 1 (2011)

    Google Scholar 

  2. De Smet, W., Moens, M.-F.: Cross-language linking of news stories on the web using interlingual topic modelling. In: Proceedings of the 2nd ACM workshop on Social web search and mining, pp. 57–64. ACM (2009)

    Google Scholar 

  3. Hong, L., Ahmed, A., Gurumurthy, S., Smola, A.J., Tsioutsiouliklis, K.: Discovering geographical topics in the twitter stream. In: Proceedings of the 21st International Conference on World Wide Web, pp. 769–778. ACM (2012)

    Google Scholar 

  4. Purver, M., Griffiths, T.L., Körding, K.P., Tenenbaum, J.B.: Unsupervised topic modelling for multi-party spoken discourse. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 17–24. Association for Computational Linguistics (2006)

    Google Scholar 

  5. Steyvers, M., Griffiths, T.: Probabilistic topic models. Handb. latent Semant. Anal. 427, 424–440 (2007)

    Google Scholar 

  6. Chang, J., Gerrish, S., Wang, C., Boyd-graber, J.L., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: Advances in Neural Information Processing Systems, pp. 288–296 (2009)

    Google Scholar 

  7. Wang, W., Barnaghi, P., Bargiela, A.: Probabilistic topic models for learning terminological ontologies. Knowl. Data Eng. IEEE Trans. 22, 1028–1040 (2010)

    Article  Google Scholar 

  8. Shmulevich, I., Dougherty, E.R., Zhang, W.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90, 1778–1792 (2002)

    Article  Google Scholar 

  9. Auffarth, B.: Understanding smell—The olfactory stimulus problem. Neurosci. Biobehav. Rev. 37, 1667–1679 (2013)

    Article  Google Scholar 

  10. Khan, R.M., et al.: Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J. Neurosci. 27, 10015–10023 (2007)

    Article  Google Scholar 

  11. Zarzo, M., Stanton, D.T.: Identification of latent variables in a semantic odor profile database using principal component analysis. Chem. Senses 31, 713–724 (2006)

    Article  Google Scholar 

  12. Gottfried, J.A., Dolan, R.J.: The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39, 375–386 (2003)

    Article  Google Scholar 

  13. Dunkel, M., et al.: SuperScent—a database of flavors and scents. Nucleic Acids Res. 37, D291–D294 (2009)

    Article  Google Scholar 

  14. Leon, M., Johnson, B.: Glomerular response archive. (2008). http://gara.bio.uci.edu/index.jsp

  15. Acree, T., Arn, H.: Flavornet (2004). http://www.flavornet.org/flavornet.html

  16. Luebke, W.: The good scents company (1980). http://www.thegoodscentscompany.com/index.html

  17. Molecular descriptors for chemoinformatics, 2nd edn. Wiley-VCH (2009) (3).pdf

    Google Scholar 

  18. Shaoul, C., Westbury, C.: Word frequency effects in high-dimensional co-occurrence models: A new approach. Behav. Res. Methods 38, 190–195 (2006)

    Article  Google Scholar 

  19. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  20. Erdos, P., Rényi, A.: On the evolution of random graphs. Bull. Inst. Internat. Stat. 38, 343–347 (1961)

    Google Scholar 

  21. Abe, H., Kanaya, S., Komukai, T., Takahashi, Y., Sasaki, S.: Systemization of semantic descriptions of odors. Anal. Chim. Acta 239, 73–85 (1990)

    Article  Google Scholar 

  22. Müller, J.: The H&R book of perfume: Understanding fragrance; origins, history, development; guide to fragrance ingredients. Glöss Verlag, Hambg (1992)

    Google Scholar 

  23. Zarzo, M.: Hedonic judgments of chemical compounds are correlated with molecular size. Sensors (Basel) 11, 3667–3686 (2011)

    Article  Google Scholar 

  24. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora (2010)

    Google Scholar 

  25. Arun, R., Suresh, V., Madhavan, C.E.V., Murthy, M.N.N.: In: Advances in Knowledge Discovery and Data Mining, pp. 391–402. Springer (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Kaur, R., Bhondekar, A.P. (2015). The Smell Network. In: Wang, L., Uesugi, S., Ting, IH., Okuhara, K., Wang, K. (eds) Multidisciplinary Social Networks Research. MISNC 2015. Communications in Computer and Information Science, vol 540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48319-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48319-0_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48318-3

  • Online ISBN: 978-3-662-48319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics