Skip to main content

Smoothed Analysis of the Squared Euclidean Maximum-Cut Problem

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

It is well-known that local search heuristics for the Maximum-Cut problem can take an exponential number of steps to find a local optimum, even though they usually stabilize quickly in experiments. To explain this discrepancy we have recently analyzed the simple local search algorithm FLIP in the framework of smoothed analysis, in which inputs are subject to a small amount of random noise. We have shown that in this framework the number of iterations is quasi-polynomial, i.e., it is polynomially bounded in n logn and φ, where n denotes the number of nodes and φ is a parameter of the perturbation.

In this paper we consider the special case in which the nodes are points in a d-dimensional space and the edge weights are given by the squared Euclidean distances between these points. We prove that in this case for any constant dimension d the smoothed number of iterations of FLIP is polynomially bounded in n and 1/σ, where σ denotes the standard deviation of the Gaussian noise. Squared Euclidean distances are often used in clustering problems and our result can also be seen as an upper bound on the smoothed number of iterations of local search for min-sum 2-clustering.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method. JACM 58(5), 19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm. SICOMP 39(2), 766–782 (2009)

    Article  MATH  Google Scholar 

  3. Elsässer, R., Tscheuschner, T.: Settling the complexity of local max-cut (almost) completely. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 171–182. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Englert, M., Röglin, H., Vöcking, B.: Worst case and prob. analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Etscheid, M., Röglin, H.: Smoothed analysis of local search for the maximum-cut problem. In: Proc. of 25th SODA, pp. 882–889 (2014)

    Google Scholar 

  6. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search appr. algo. for k-means clustering. Comput. Geom. 28, 89–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kleinberg, J., Tardos, É.: Algorithm design. Addison-Wesley (2006)

    Google Scholar 

  8. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst case. IT - Information Technology 53(6), 280–286 (2011)

    Article  Google Scholar 

  9. Manthey, B., Veenstra, R.: Smoothed analysis of the 2-opt heuristic for the TSP: Polynomial bounds for gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Sankar, A., Spielman, D., Teng, S.-H.: Smoothed analysis of the condition numb. and growth factors of matrices. SIMAX 28(2), 446–476 (2006)

    Article  MATH  Google Scholar 

  11. Schäffer, A., Yannakakis, M.: Simple local search problems that are hard to solve. SICOMP 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schulman, L.: Clustering for edge-cost minimization. In: Proc. of 32nd STOC, pp. 547–555 (2000)

    Google Scholar 

  13. Spielman, D., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. JACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Spielman, D., Teng, S.-H.: Smoothed analysis: An attempt to explain the behavior of algorithms in practice. CACM 52(10), 76–84 (2009)

    Article  Google Scholar 

  15. Telgarsky, M., Vattani, A.: Hartigan’s method: k-means clustering without voronoi. In: Proc. of 13th AISTATS, pp. 820–827 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Etscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Etscheid, M., Röglin, H. (2015). Smoothed Analysis of the Squared Euclidean Maximum-Cut Problem. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics