Compressed Data Structures for Dynamic Sequences

J. Ian Munro* Yakov Nekrich ${ }^{\dagger}$

Abstract

We consider the problem of storing a dynamic string S over an alphabet $\Sigma=\{1, \ldots, \sigma\}$ in compressed form. Our representation supports insertions and deletions of symbols and answers three fundamental queries: access (i, S) returns the i-th symbol in $S, \operatorname{rank}_{a}(i, S)$ counts how many times a symbol a occurs among the first i positions in S, and $\operatorname{select}_{a}(i, S)$ finds the position where a symbol a occurs for the i-th time. We present the first fully-dynamic data structure for arbitrarily large alphabets that achieves optimal query times for all three operations and supports updates with worst-case time guarantees. Ours is also the first fully-dynamic data structure that needs only $n H_{k}+o(n \log \sigma)$ bits, where H_{k} is the k-th order entropy and n is the string length. Moreover our representation supports extraction of a substring $S[i . . i+\ell]$ in optimal $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time.

1 Introduction

In this paper we consider the problem of storing a sequence S of length n over an alphabet $\Sigma=\{1, \ldots, \sigma\}$ so that the following operations are supported:

- access (i, S) returns the i-th symbol, $S[i]$, in S
- $\operatorname{rank}_{a}(i, S)$ counts how many times a occurs among the first i symbols in S, $\operatorname{rank}_{a}(i, S)=$ $\mid\{j \mid S[j]=a$ and $1 \leq j \leq i\} \mid$
- select $_{a}(i, S)$ finds the position in S where a occurs for the i-th time, $\operatorname{select}_{a}(i, S)=j$ where j is such that $S[j]=a$ and $\operatorname{rank}_{a}(j, S)=i$.
This problem, also known as the rank-select problem, is one of the most fundamental problems in compressed data structures. There are many data structures that store a string in compressed form and support three above defined operations efficiently. There are static data structures that use $n H_{0}+o(n \log \sigma)$ bits or even $n H_{k}+o(n \log \sigma)$ bits for any $k \leq \alpha \log _{\sigma} n-1$ and a positive constant $\alpha<1$. Efficient static rank-select data structures are described in [16, 15, 12, 25, 26, 4, 20, 35, 6]. We refer to [6] for most recent results and a discussion of previous static solutions.

In many situations we must work with dynamic sequences. We must be able to insert a new symbol at an arbitrary position i in the sequence or delete an arbitrary symbol $S[i]$. The design of dynamic solutions, that support insertions and deletions of symbols, is an important problem.

[^0]| Ref. | Space | Rank | Select | Access | Insert/
 Delete | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[20]$ | $n H_{0}(S)+o(n \log \sigma)$ | $O((1+\log \sigma / \log \log n) \lambda)$ | | $O((1+\log \sigma / \log \log n) \lambda)$ | W | |
| $[35]$ | $n H_{0}(S)+o(n \log \sigma)$ | $O((\log \sigma / \log \log n) \lambda)$ | | $O((\log \sigma / \log \log n) \lambda)$ | W | |
| $[33]$ | $n H_{0}(S)+o(n \log \sigma)$ | $O(\lambda)$ | $O(\lambda)$ | $O(\lambda)$ | $O(\lambda)$ | A |
| $[33]$ | $n H_{0}(S)+o(n \log \sigma)$ | $O(\log n)$ | $O(\lambda)$ | $O(\lambda)$ | $O(\log n)$ | W |
| $[23]$ | $n H_{k}+o(n \log \sigma)$ | - | - | $O(\lambda)$ | $O(\lambda)$ | W |
| $[17]$ | $n H_{k}+o(n \log \sigma)$ | - | - | $O(\lambda)$ | $O(\lambda)$ | W |
| New | $n H_{k}+o(n \log \sigma)$ | $O(\lambda)$ | $O(\lambda)$ | $O(\lambda)$ | $O(\lambda)$ | W |

Table 1: Previous and New Results for Fully-Dynamic Sequences. The rightmost column indicates whether updates are amortized (A) or worst-case (W). We use notation $\lambda=\log n / \log \log n$ in this table.

Fully-dynamic data structures for rank-select problem were considered in [21, 10, 8, 27, 9, 19, 28, 22]. Recently Navarro and Nekrich [33, 34 obtained a fully-dynamic solution with $O(\log n / \log \log n)$ times for rank, access, and select operations. By the lower bound of Fredman and Saks [14], these query times are optimal. The data structure described in [33] uses $n H_{0}(S)+o(n \log \sigma)$ bits and supports updates in $O(\log n / \log \log n)$ amortized time. It is also possible to support updates in $O(\log n)$ worst-case time, but then the time for answering a rank query grows to $O(\log n)[34]$. All previously known fully-dynamic data structures need at least $n H_{0}(S)+o(n \log \sigma)$ bits. Two only exceptions are data structures of Jansson et al. [23] and Grossi et al. [17] that keep S in $n H_{k}(S)+$ $o(n \log \sigma)$ bits, but do not support rank and select queries. A more restrictive dynamic scenario was considered by Grossi et al. [17] and Jansson et al. [23: an update operation replaces a symbol $S[i]$ with another symbol so that the total length of S does not change, but insertions of new symbols or deletions of symbols of S are not supported. Their data structures need $n H_{k}(S)+o(n \log \sigma)$ bits and answer access queries in $O(1)$ time; the data structure of Grossi et al. [17] also supports rank and select queries in $O(\log n / \log \log n)$ time.

In this paper we describe the first fully-dynamic data structure that keeps the input sequence in $n H_{k}(S)+o(n \log \sigma)$ bits; our representation supports rank, select, and access queries in optimal $O(\log n / \log \log n)$ time. Symbol insertions and deletions at any position in S are supported in $O(\log n / \log \log n)$ worst-case time. We list our and previous results for fully-dynamic sequences in Table 1. Our representation of dynamic sequences also supports the operation of extracting a substring. Previous dynamic data structures require $O(\ell)$ calls of access operation in order to extract the substring of length ℓ. Thus the previous best fully-dynamic representation, described in 33] needs $O(\ell(\log n / \log \log n))$ time to extract a substring $S[i . . i+\ell-1]$ of S. Data structures described in [17] and [23] support substring extraction in $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time but they either do not support rank and select queries or they support only updates that replace a symbol with another symbol. Our dynamic data structure can extract a substring in optimal $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time without any restrictions on updates or queries.

In Section 2 we describe a data structure that uses $O(\log n)$ bits per symbol and supports rank, select, and access in optimal $O(\log n / \log \log n)$ time. This data structure essentially maintains a linked list L containing all symbols of S; using some auxiliary data structures on L, we can answer rank, select, and access queries on S. In Section 3 we show how the space usage can
be reduced to $O(\log \sigma)$ bits per symbol. A compressed data structure that needs $H_{0}(S)$ bits per symbol is presented in Section [4. The approach of Section 4 is based on dividing S into a number of subsequences. We store a fully-dynamic data structure for only one such subsequence of appropriately small size. Updates on other subsequences are supported by periodic re-building. In Section 5 we show that the space usage can be reduced to $n H_{k}(S)+o(n \log \sigma)$.

$2 O(n \log n)$-Bit Data Structure

We start by describing a data structure that uses $O(\log n)$ bits per symbol.
Lemma 1 A dynamic string $S[1, m]$ for $m \leq n$ over alphabet $\Sigma=\{1, \ldots, \sigma\}$ can be stored in a data structure that needs $O(m \log m)$ bits, and answers queries access, rank and select in time $O(\log m / \log \log n)$. Insertions and deletions of symbols are supported in $O(\log m / \log \log n)$ time. The data structure uses a universal look-up table of size o(n^{ε}) for an arbitrarily small $\varepsilon>0$.

Proof: We keep elements of S in a list L. Each entry of L contains a symbol $a \in \Sigma$. For every $a \in \Sigma$, we also maintain the list L_{a}. Entries of L_{a} correspond to those entries of L that contain the symbol a. We maintain data structures $D(L)$ and $D\left(L_{a}\right)$ that enable us to find the number of entries in L (or in some list L_{a}) that precede an entry $e \in L$ (resp. $e \in L_{a}$); we can also find the i-th entry e in L_{a} or L using $D(L$.$) . We will prove in Lemma 6 that D(L)$ needs $O(m \log m)$ bits and supports queries and updates on L in $O(\log m / \log \log n)$ time.

We can answer a query $\operatorname{select}_{a}(i, S)$ by finding the i-th entry e_{i} in L_{a}, following the pointer from e_{i} to the corresponding entry $e^{\prime} \in L$, and counting the number v of entries preceding e^{\prime} in L. Clearly $\sum^{2}, \operatorname{select}_{a}(i, S)=v$. To answer a query $\operatorname{rank}_{a}(i, S)$, we first find the i-th entry e in L. Then we find the last entry e_{a} that precedes e and contains a. Such queries can be answered in $O\left((\log \log \sigma)^{2} \log \log m\right)$ time as will be shown in Lemma 5 in Section A.1. If e_{a}^{\prime} is the entry that corresponds to e_{a} in L_{a}, then $\operatorname{rank}_{a}(i, S)=v$, where v is the number of entries that precede e_{a}^{\prime} in L_{a}.

$3 O(n \log \sigma)$-Bit Data Structure

Lemma $2 A$ dynamic string $S[1, n]$ over alphabet $\Sigma=\{1, \ldots, \sigma\}$ can be stored in a data structure using $O(n \log \sigma)$ bits, and supporting queries access, rank and select in time $O(\log n / \log \log n)$. Insertions and deletions of symbols are supported in $O(\log n / \log \log n)$ time.

Proof: If $\sigma=\log ^{O(1)} n$, then the data structures described in [35] and [20] provide desired query and update times. The case $\sigma=\log ^{\Omega(1)} n$ is considered below.

We show how the problem on a sequence of size n can be reduced to the same problem on a sequence of size $O(\sigma \log n)$. The sequence S is divided into chunks. We can maintain the size n_{i} of each chunk C_{i}, so that $n_{i}=O(\sigma \log n)$ and the total number of chunks is bounded by $O(n / \sigma)$. We will show how to maintain chunks in Section A.3. For each $a \in \Sigma$, we keep a global bit sequence $B_{a} . \quad B_{a}=1^{d_{1}} 01^{d_{2}} 0 \ldots 1^{d_{i}} 0 \ldots$ where d_{i} is the number of times a occurs in the chunk C_{i}. We also keep a bit sequence $B_{t}=1^{n_{1}} 01^{n_{2}} 0 \ldots 1^{n_{i}} 0 \ldots$. We can compute $\operatorname{rank}_{a}(i, S)=v_{1}+v_{2}$ where $v_{1}=\operatorname{rank}_{1}\left(\operatorname{select}_{0}\left(j_{1}, B_{a}\right), B_{a}\right), j_{1}=\operatorname{rank}_{0}\left(\operatorname{select}_{1}\left(i, B_{t}\right), B_{t}\right), v_{2}=\operatorname{rank}_{a}\left(i_{1}, C_{i_{2}}\right), i_{2}=j_{1}+1$ and

[^1]$i_{1}=i-\operatorname{rank}_{1}\left(\operatorname{select}_{0}\left(j_{1}, B_{t}\right), B_{t}\right)$. To answer a query $\operatorname{select}_{a}(i, S)$, we first find the index i_{2} of the chunk $C_{i_{2}}$ that contains the i-th occurrence of $i, i_{2}=\operatorname{rank}_{0}\left(\operatorname{select}_{1}\left(i, B_{a}\right), B_{a}\right)+1$. Then we find $v_{a}=\operatorname{select}_{a}\left(C_{i_{2}}, i-i_{1}\right)$ for $i_{1}=\operatorname{rank}_{1}\left(\operatorname{select}_{0}\left(i_{2}-1, B_{a}\right), B_{a}\right) ; v_{a}$ identifies the position of the ($i-i_{1}$)-th occurrence of a in the chunk $C_{i_{2}}$, where i_{1} denotes the number of a 's in the first $i_{2}-1$ chunks. Finally we compute select ${ }_{a}(i, S)=v_{a}+s_{p}$ where $s_{p}=\operatorname{rank}_{1}\left(\operatorname{select}_{0}\left(i_{2}-1, B_{t}\right), B_{t}\right)$ is the total number of symbols in the first $i_{2}-1$ chunks. We can support queries and updates on B_{t} and on each B_{a} in $O(\log n / \log \log n)$ time [35]. By Lemma 11 queries and updates on C_{i} are supported in $O(\log \sigma / \log \log n)$ time. Hence, the query and update times of our data structure are $O(\log n / \log \log n)$.
B_{t} can be kept in $O((n / \sigma) \log \sigma)$ bits [35]. The array B_{a} uses $O\left(n_{a} \log \frac{n}{n_{a}}\right)$ bits, where n_{a} is the number of times a occurs in S. Hence, all B_{a} and B_{t} use $O\left((n / \sigma) \log \sigma+\sum_{a} n_{a} \log \frac{n}{n_{a}}\right)=O(n \log \sigma)$ bits. By Lemma 1. we can also keep the data structure for each chunk in $O(\log \sigma+\log \log n)=$ $O(\log \sigma)$ bits per symbol.

4 Compressed Data Structure

In this Section we describe a data structure that uses $H_{0}(S)$ bits per symbol. We start by considering the case when the alphabet size is not too large, $\sigma \leq n / \log ^{3} n$. The sequence S is split into subsequences $S_{0}, S_{1}, \ldots S_{r}$ for $r=O(\log n /(\log \log n))$. The subsequence S_{0} is stored in $O(\log \sigma)$ bits per element as described in Lemma 2, Subsequences $S_{1}, \ldots S_{r}$ are substrings of $S \backslash S_{0}$. $S_{1}, \ldots S_{r}$ are stored in compressed static data structures. New elements are always inserted into the subsequence S_{0}. Deletions from $S_{i}, i \geq 1$, are implemented as lazy deletions: an element in S_{i} is marked as deleted. We guarantee that the number of elements that are marked as deleted is bounded by $O(n / r)$. If a subsequence S_{i} contains many elements marked as deleted, it is re-built: we create a new instance of S_{i} that does not contain deleted symbols. If a symbol sequence S_{0} contains too many elements, we insert the elements of S_{0} into S_{i} and re-build S_{i} for $i \geq 1$. Processes of constructing a new subsequence and re-building a subsequence with too many obsolete elements are run in the background.

The bit sequence M identifies elements in S that are marked as deleted: $M[j]=0$ if and only if $S[j]$ is marked as deleted. The bit sequence R distinguishes between the elements of S_{0} and elements of $S_{i}, i \geq 1: R[j]=0$ if the j-th element of S is kept in S_{0} and $R[j]=1$ otherwise.

We further need auxiliary data structures for answering select queries. We start by defining an auxiliary subsequence \tilde{S} that contains copies of elements already stored in other subsequences. Consider a subsequence \bar{S} obtained by merging subsequences S_{1}, \ldots, S_{r} (in other words, \bar{S} is obtained from S by removing elements of S_{0}). Let $S_{a}^{\prime \prime}$ be the subsequence obtained by selecting (roughly) every r-th occurrence of a symbol a in \bar{S}. The subsequence S^{\prime} is obtained by merging subsequences S_{a}^{\prime} for all $a \in \Sigma$. Finally \tilde{S} is obtained by merging S^{\prime} and S_{0}. We support queries $\operatorname{select}_{a}^{\prime}(i, \tilde{S})$ on \tilde{S}, defined as follows: $\operatorname{select}_{a}^{\prime}(i, \tilde{S})=j$ such that (i) a copy of $S[j]$ is stored in \tilde{S} and (ii) if select ${ }_{a}(i, S)=j_{1}$, then $j \leq j_{1}$ and copies of elements $S[j+1], S[j+2], \ldots, S\left[j_{1}\right]$ are not stored in \tilde{S}. That is, $\operatorname{select}_{a}^{\prime}(i, \tilde{S})$ returns the largest index j, such that $S[j]$ precedes $S\left[\operatorname{select}_{a}(i, S)\right]$ and $S[j]$ is also stored in \tilde{S}. The data structure for \tilde{S} delivers approximate answers for select queries; we will show later how the answer to a query $\operatorname{select}_{a}(i, S)$ can be found quickly if the answer to select $_{a}^{\prime}(i, \tilde{S})$ is known. Queries select ${ }^{\prime}(i, \tilde{S})$ can be implemented using standard operations on a bit sequence of size $O((n / r) \log \log n)$ bits; for completeness, we provide a description in Section A.8, We remark that \bar{S} and S^{\prime} are introduced to define \tilde{S}; these two subsequences are not stored in our

Name	Purpose	Alph.	Dynamic/ Static
S_{0}	Subsequence of S	-	Dynamic
$S_{i}, 1 \leq i \leq r$	Subsequence of S	-	Static
M	Positions of symbols in $S_{i}, i \geq 1$, that are marked as deleted	const	Dynamic
R	Positions of symbols from S_{0} in S	const	Dynamic
\tilde{S}	Delivers an approximate answer to select queries	-	Dynamic
$S_{a}^{\prime}, a \in \Sigma$	Auxiliary sequences for \tilde{S}	-	Dynamic
\tilde{E}	Positions of symbols from \tilde{S} in S	const	Dynamic
\tilde{B}	Positions of symbols from S_{0} in \tilde{S}	const	Dynamic
D_{a}	Positions of symbols marked as deleted among all a 's	const	Dynamic

Table 2: Auxiliary subsequences for answering rank and select queries. A subsequence is dynamic if both insertions and deletions are supported. If a subsequence is static, then updates are not supported. Static subsequences are re-built when they contain too many obsolete elements.
data structure. The bit sequence \tilde{E} indicates what symbols of S are also stored in $\tilde{S}: \tilde{E}[i]=1$ if a copy of $S[i]$ is stored in \tilde{S} and $\tilde{E}[i]=0$ otherwise. The bit sequence \tilde{B} indicates what symbols in \tilde{S} are actually from $S_{0}: \tilde{B}[i]=0$ iff $\tilde{S}[i]$ is stored in the subsequence S_{0}. Besides, we keep bit sequences D_{a} for each $a \in \Sigma$. Bits of D_{a} correspond to occurrences of a in S. If the l-th occurrence of a in S is marked as deleted, then $D_{a}[l]=0$. All other bits in D_{a} are set to 1 .

We provide the list of subsequences in Table 2. Each subsequence is augmented with a data structure that supports rank and select queries. For simplicity we will not distinguish between a subsequence and a data structure on its elements. If a subsequence supports updates, then either (i) this is a subsequence over a small alphabet or (ii) this subsequence contains a small number of elements. In case (i), the subsequence is over an alphabet of constant size; by [35, 20] queries on such subsequences are answered in $O(\log n / \log \log n)$ time. In case (ii) the subsequence contains $O(n / r)$ elements; data structures on such subsequences are implemented as in Lemma 2, All auxiliary subsequences, except for \tilde{S}, are of type (i). Subsequence S_{0} and an auxiliary subsequence \tilde{S} are of type (ii). Subsequences S_{i} for $i \geq 1$ are static, i.e. they are stored in data structures that do not support updates. We re-build these subsequences when they contain too many obsolete elements. Thus dynamic subsequences support rank, select, access, and updates in $O(\log n / \log \log n)$ time. It is known that we can implement all basic operations on a static sequence in $O(\log n / \log \log n)$ time 3 . Our data structures on static subsequences are based on the approach of Barbay et al. [5]; however, our data structure can be constructed faster when the alphabet size is small and supports a substring extraction operation. A full description will be given in Section A.7 We will show below that queries on S are answered by $O(1)$ queries on dynamic subsequences and $O(1)$ queries on static subsequences.

We also maintain arrays Size [] and Count $_{a}[]$ for every $a \in \Sigma$. For any $1 \leq i \leq r$, Size $[i]$ is the number of symbols in S_{i} and Count $_{a}[i]$ specifies how many times a occurs in S_{i}. We keep a data structure that computes the sum of the first $i \leq r$ entries in Size $[i]$ and find the largest j such that $\sum_{t=1}^{j}$ Size $[t] \leq q$ for any integer q. The same kinds of queries are also supported on Count ${ }_{a}[]$. Arrays Size[] and Count ${ }_{a}[]$ use $O(\sigma \cdot r \cdot \log n)=O(n / \log n)$ bits.

[^2]Queries. To answer a query $\operatorname{rank}_{a}(i, S)$, we start by computing $i^{\prime}=\operatorname{select}_{1}(i, M) ; i^{\prime}$ is the position of the i-th element that is not marked as deleted. Then we find $i_{0}=\operatorname{rank}_{0}\left(i^{\prime}, R\right)$ and $i_{1}=\operatorname{rank}_{1}\left(i^{\prime}, R\right)$. By definition of R, i_{0} is the number of elements of $S[1 . . i]$ that are stored in the subsequence S_{0}. The number of a 's in $S_{0}\left[1 . . i_{0}\right]$ is computed as $c_{1}=\operatorname{rank}_{a}\left(i_{0}, S_{0}\right)$. The number of a 's in S_{1}, \ldots, S_{r} before the position i^{\prime} is found as follows. We identify the index t, such that $\sum_{j=1}^{t} S i z e[j]<i_{1} \leq \sum_{j=1}^{t+1} S i z e[j]$. Then we compute how many times a occurred in S_{1}, \ldots, S_{t}, $c_{2,1}=\sum_{j=1}^{t}$ Count $_{a}[j]$, and in the relevant prefix of $S_{t+1}, c_{2,2}=\operatorname{rank}_{a}\left(i_{1}-\sum_{j=1}^{t} \operatorname{Size}[j], S_{t+1}\right)$. Let $c_{2}=\operatorname{rank}_{1}\left(c_{2,1}+c_{2,2}, D_{a}\right)$. Thus c_{2} is the number of symbols ' a ' that are not marked as deleted among the first $c_{2,1}+c_{2,2}$ occurrences of a in $S \backslash S_{0}$. Hence $\operatorname{rank}_{a}(i, S)=c_{1}+c_{2}$.

To answer a query $\operatorname{select}_{a}(i, S)$, we first obtain an approximate answer by asking a query $\operatorname{select}_{a}^{\prime}(i, \tilde{S})$. Let $i^{\prime}=\operatorname{select}_{1}\left(i, D_{a}\right)$ be the rank of the i-th symbol a that is not marked as deleted. Let $l_{0}=\operatorname{select}_{a}^{\prime}\left(i^{\prime}, \tilde{S}\right)$. We find $l_{1}=\operatorname{rank}_{1}\left(l_{0}, \tilde{E}\right)$ and $l_{2}=\operatorname{select}_{a}\left(\operatorname{rank}_{a}\left(l_{1}, \tilde{S}\right)+1, \tilde{S}\right)$. Let first $=$ $\operatorname{select}_{1}\left(l_{1}, \tilde{E}\right)$ and last $=\operatorname{select}_{1}\left(l_{2}, \tilde{E}\right)$ be the positions of $\tilde{S}\left[l_{1}\right]$ and $\tilde{S}\left[l_{2}\right]$ in S. By definition of select ${ }^{\prime}$, $\operatorname{rank}_{a}($ first,$S) \leq i$ and $\operatorname{rank}_{a}($ last,$S)>i$. If $\operatorname{rank}_{a}($ first, $S)=i$, then obviously select ${ }_{a}(i, S)=$ first. Otherwise the answer to $\operatorname{select}_{a}(i, S)$ is an integer between first and last. By definition of \tilde{S}, the substring $S[$ first $], S[$ first +1$], \ldots, S[$ last $]$ contains at most r occurrences of a. All these occurrences are stored in subsequences S_{j} for $j \geq 1$. We compute $i_{0}=\operatorname{rank}_{a}\left(\operatorname{rank}_{0}(\right.$ first, $\left.R), S_{0}\right)$ and $i_{1}=i^{\prime}-i_{0}$. We find the index t such that $\sum_{j=1}^{t-1}$ Count $_{a}[j]<i_{1} \leq \sum_{j=1}^{t}$ Count $_{a}[j]$. Then $v_{1}=\operatorname{select}_{a}\left(i_{1}-\sum_{j=1}^{t-1} \operatorname{Count}_{a}[j], S_{t}\right)$ is the position of $S\left[\operatorname{select}_{a}(i, S)\right]$ in S_{t}. We find its index in S by computing $v_{2}=v_{1}+\sum_{j=1}^{t-1} S i z e[j]$ and $v_{3}=\operatorname{select}_{1}\left(v_{2}, R\right)$. Finally $\operatorname{select}_{a}(i, S)=\operatorname{rank}_{1}\left(v_{3}, M\right)$.

Answering an access query is straightforward. We determine whether $S[i]$ is stored in S_{0} or in some S_{j} for $j \geq 1$ using R. Let $i^{\prime}=\operatorname{select}_{1}(i, M)$. If $R\left[i^{\prime}\right]=0$ and $S[i]$ is stored in S_{0}, then $S[i]=S_{0}\left[\operatorname{rank}_{0}\left(i^{\prime}, R\right)\right]$. If $R\left[i^{\prime}\right]=1$, we compute $i_{1}=\operatorname{rank}_{1}\left(i^{\prime}, R\right)$ and find the index j such that $\sum_{t=1}^{j-1} \operatorname{Size}[t]<i_{1} \leq \sum_{t=1}^{j} \operatorname{Size}[t]$. The answer to $\operatorname{access}(i, S)$ is $S[i]=S_{j}\left[i_{2}\right]$ for $i_{2}=$ $i_{1}-\sum_{t=1}^{j-1}$ Size $[t]$.

Space Usage. The redundancy of our data structure can be estimated as follows. The space needed to keep the symbols that are marked as deleted in subsequences S_{j} is bounded by $O((n / r)(\log \sigma+$ $\log r)$): Let \bar{n}_{a} denote the number of symbols a that are marked as deleted and let $\bar{n}=\sum_{a} \bar{n}_{a}$. Then all symbols that are marked as deleted use $X=\sum_{a} \bar{n}_{a} \log \frac{n+\bar{n}}{n_{a}+\bar{n}_{a}}$ bits. Since $\frac{n+\bar{n}}{n_{a}+\bar{n}_{a}} \leq \frac{2 n}{\bar{n}_{a}}$, $X \leq \sum_{a} \bar{n}_{a}+\sum_{a} \bar{n}_{a} \log \frac{n}{\bar{n}_{a}}$. If $\bar{n}<n / r^{2}, X=o(n)$. If $\bar{n}>n / r^{2}$, then $X=O(n / r)+O(n \log r)+$ $\sum_{a} \bar{n}_{a} \log \frac{\bar{n}}{\bar{n}_{a}}=O\left(\frac{n}{r}(\log \sigma+\log r)\right) . S_{0}$ also takes $O((n / r) \log \sigma)$ bits. The bit sequences R and M need $O((n / r) \log r)=o(n)$ bits; \tilde{B}, \tilde{E} also use $O((n / r) \log r)$ bits. Each bit sequence D_{a} can be maintained in $O\left(n_{a}^{\prime} \log \left(n_{a} / n_{a}^{\prime}\right)\right)$ bits where n_{a} is the total number of symbols a in S and n_{a}^{\prime} is the number of symbols a that are marked as deleted. All D_{a} take $O\left(\sum_{a \in \Sigma} n_{a}^{\prime} \log \frac{n_{a}}{n_{a}^{\prime}}\right)$. To estimate the last expression, we divide the alphabet Σ into Σ_{1} and Σ_{2};Sigma contains all symbols a such that $n_{a}^{\prime} \geq n_{a} / \log ^{2} n$ and Σ_{2} contains all symbols a, such that $n_{a}^{\prime}<n_{a} / \log ^{2} n$. Then $\sum_{a \in \Sigma} n_{a}^{\prime} \log \frac{n_{a}}{n_{a}^{\prime}}=$ $\sum_{a \in \Sigma_{1}} n_{a}^{\prime} \log \frac{n_{a}}{n_{a}^{\prime}}+\sum_{a \in \Sigma_{2}} n_{a}^{\prime} \log \frac{n_{a}}{n_{a}^{\prime}} \leq(2 n / r) \log \log n+(n / \log n)=O((n / r) \log \log n)$. Hence all D_{a} need $O((n / r) \log \log n)=o(n)$ bits. The subsequence \tilde{S} can be stored in $O((n / r) \log \sigma)$ bits. Thus all auxiliary subsequences use $O((n / r)(\log \sigma+\log r))=O\left(n \frac{\log \sigma \log \log n}{\log n}\right)$ bits. Data structures for subsequences $S_{i}, r \geq i \geq 1$, use $\sum_{i=1}^{r}\left(n_{i} H_{k}\left(S_{i}\right)+o\left(n_{i} \log \sigma\right)\right)=n H_{k}\left(S \backslash S_{0}\right)+o(n \log \sigma)$ bits for any $k=o\left(\log _{\sigma} n\right)$, where n_{i} is the number of symbols in S_{i}. Since $H_{k}(S) \leq H_{0}(S)$ for $k \geq 0$, all subsequences S_{i} are stored in $n H_{0}(S)+o(n \log \sigma)$ bits.

Updates. When a new symbol is inserted, we insert it into the subsequence S_{0} and update the sequence R. The data structure for \tilde{S} is also updated accordingly. We also insert a 1-bit at the appropriate position of bit sequences M and D_{a} where a is the inserted symbol. Deletions from S_{0} are symmetric. When an element is deleted from $S_{i}, i \geq 1$, we replace the 1-bit corresponding to this element in M with a 0 -bit. We also change the appropriate bit in D_{a} to 0 , where a is the symbol that was deleted from S_{i}.

We must guarantee that the number of elements in S_{0} is bounded by $O(n / r)$; the number of elements marked as deleted must be also bounded by $O(n / r)$. Hence we must re-build the data structure when the number of symbols in S_{0} or the number of deleted symbols is too big. Since we aim for updates with worst-case bounds, the cost of re-building is distributed among $O(n / r)$ updates. We run two processes in the background. The first background process moves elements of S_{0} into subsequences S_{i}. The second process purges sequences S_{1}, \ldots, S_{r} and removes all symbols marked as deleted from these sequences. Details are given in Section A.4.

We assumed in the description of updates that $\log n$ is fixed. In the general case we need additional background processes that increase or decrease sizes of subsequences when n becomes too large or too small. These processes are organized in a standard way. Thus we obtain the following result

Lemma 3 A dynamic string $S[1, n]$ over alphabet $\Sigma=\{1, \ldots, \sigma\}$ for $\sigma<n / \log ^{3} n$ can be stored in a data structure that uses $n H_{0}+O\left(n \frac{\log \sigma \log \log n}{\log n}\right)+O\left(n(\log \log \sigma)^{3}\right)$ bits and answers queries access, rank and select in time $O(\log n / \log \log n)$. Insertions and deletions of symbols are supported in $O(\log n / \log \log n)$ time.

4.1 Compressed Data Structure for $\sigma>n / \log ^{3} n$

If the alphabet size σ is almost linear, we cannot afford storing the arrays Count $_{a}[]$. Instead, we keep a bit sequence B Count $_{a}$ for each alphabet symbol a. Let $s_{a, i}$ denote the number of a 's occurrences in the subsequence S_{i} and $s_{a}=\sum_{i=1}^{r} s_{a, i}$. Then BCount ${ }_{a}=1^{s_{a, 1}} 01^{s_{a, 2}} 0 \ldots 1^{s_{a, r}}$. If $s_{a}<r \log ^{2} n$, we can keep B Count $_{a}$ in $O\left(s_{a} \log \frac{r+s_{a}}{s_{a}}\right)=O\left(s_{a} \log \log n\right)$ bits. If $s_{a}>r \log ^{2} n$, we can keep B Count $_{a}$ in $O\left(r \log \frac{r+s_{a}}{s_{a}}\right)=O\left(\left(s_{a} / \log ^{2} n\right) \log n\right)=O\left(s_{a} / \log n\right)$ bits. Using $B C o u n t_{a}$, we can find for any q the subsequence S_{j}, such that $\operatorname{Count}_{a}[j]<q \leq \operatorname{Count}_{a}[j+1]$ in $O(\log n / \log \log n)$ time.

We also keep an effective alphabet ${ }^{4}$ for each S_{j}. We keep a bit vector $M a p_{j}[]$ of size σ, such that $\operatorname{Map}_{j}[a]=1$ if and only if a occurs in S_{j}. Using $M a p_{j}[]$, we can map a symbol $a \in[1, n]$ to a symbol $\operatorname{map}_{j}(a)=\operatorname{rank}_{1}\left(a, M a p_{j}\right)$ so that $\operatorname{map}_{j}(a) \in\left[1,\left|S_{j}\right|\right]$ for any a that occurs in S_{j}. Let $\Sigma_{j}=\left\{\operatorname{map}_{j}(a) \mid a\right.$ occurs in $\left.S_{j}\right\}$. For every $\operatorname{map}_{j}(a)$ we can find the corresponding symbol a using a select query on $M a p_{j}$. We keep a static data structure for each sequence S_{j} over Σ_{j}. Queries and updates are supported in the same way as in Lemma 3. Combining the result of this sub-section and Lemma 3, we obtain the data structure for an arbitrary alphabet size.

Theorem 1 A dynamic string $S[1, n]$ over alphabet $\Sigma=\{1, \ldots, \sigma\}$ can be stored in a data structure that uses $n H_{0}+O\left(n \frac{\log \sigma \log \log n}{\log n}\right)+O\left(n(\log \log \sigma)^{3}\right)$ bits and answers queries access, rank and select in time $O(\log n / \log \log n)$. Insertions and deletions of symbols are supported in $O(\log n / \log \log n)$ time.

[^3]
5 Compressed Data Structure II

By slightly modifying the data structure of Theorem 1 we can reduce the space usage to essentially $H_{k}(S)$ bit per symbol for any $k=o\left(\log _{\sigma} n\right)$ simultaneously. First, we observe that any sub-sequence S_{i} for $i \geq 1$ is kept in a data structures that consumes $H_{k}\left(S_{i}\right)+o\left(\left|S_{i}\right| \log \sigma\right)$ bits of space. Thus all S_{i} use $\sum_{i=1}^{r}\left(n_{i} H_{k}\left(S_{i}\right)+o\left(n_{i} \log \sigma\right)\right)=n H_{k}\left(S \backslash S_{0}\right)+o(n \log \sigma)$ bits. It can be shown that $n H_{k}\left(S \backslash S_{0}\right)=$ $n H_{k}(S)+O\left(n\left(1+\frac{\log n}{r}\right)\right)$ bits; we prove this bound in Section A.6. Since $r=O(\log n / \log \log n)$, the data structure of Theorem 1 uses $n H_{k}+O(n)+O(n \log \log n)+O\left(n(\log \log \sigma)^{3}\right)$ bits.

In order to get rid of the $O(n \log \log n)$ additive term, we use a different static data structure; our static data structure is described in Section A.7. As before, the data structure for a sequence S_{i} uses $\left|S_{i}\right| H_{k}+o\left(\left|S_{i}\right| \log \sigma\right)$ bits. But we also show in Section A. 7 that our static data structure can be constructed in $O\left(\left|S_{i}\right| / \log ^{1 / 6} n\right)$ time if the alphabet size σ is sufficiently small, $\sigma \leq 2^{\log ^{1 / 3} n}$. The space usage $n H_{k}(S)+o(n \log \sigma)$ can be achieved by appropriate change of the parameter r. If $\sigma>2^{\log ^{1 / 3} n}$, we use the data structure of Theorem 1. As explained above, the space usage is $n H_{k}+o(n \log \sigma)+O(n \log \log n)=n H_{k}+o(n \log \sigma)$. If $\sigma \leq 2^{\log ^{1 / 3} n}$ we also use the data structure of Theorem , but we set $r=O(\log n \log \log n)$ and implement static data structures as in Section A.7. The data structure needs $n H_{k}(S)+O(n / \log \log n)+O\left(n(\log \log \sigma)^{3}\right)=n H_{k}(S)+o(n \log \sigma)$ bits. Since we can re-build a static data structure for a sequence S_{i} in $O\left(\left|S_{i}\right| \log ^{1 / 6} n\right)$ time, background processes incur an additional cost of $O(\log n / \log \log n)$. Hence the cost of updates does not increase.

Theorem 2 d dynamic string $S[1, n]$ over alphabet $\Sigma=\{1, \ldots, \sigma\}$ can be stored in a data structure that uses $n H_{k}+O\left(n \frac{\log \sigma \log \log n}{\log n}\right)+O\left(n(\log \log \sigma)^{3}\right)$ bits and answers queries access, rank and select in time $O(\log n / \log \log n)$. Insertions and deletions of symbols are supported in $O(\log n / \log \log n)$ time.

6 Substring Extraction

Our representation of compressed sequences also enables us to retrieve a substring $S[i . . i+\ell-$ 1] of S. The static data structure, described in Section A. 7 supports substring extraction in $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time. Hence we can quickly retrieve a substring of any S_{i}. We can also augment S_{0} with an $O((n / r) \log \sigma)$ additional bits, so that a substring of S_{0} is extracted in the same time. We can retrieve a substring of S by extracting a substring of S_{0} and a substring of some S_{i} for $i \geq 1$ and merging the result. A detailed description is provided in Section A.9. Our result can be summed up as follows.

Theorem 3 We can augment data structures described in Theorem $\mathbb{1}$ and Theorem \mathbf{Q} with $O((n / r) \log \sigma)$ additional bits, so that a substring of length ell can be extracted in $O\left((\log n / \log \log n)+\right.$ ell $\left./ \log _{\sigma} n\right)$ time. The parameter $r=\Omega(\log n / \log \log n)$ is defined in the same way as in Theorems $\mathbb{1}$ and 2 .

References

[1] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing. Inf. Comput., 136(1):25-51, 1997.
[2] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? In Proc. 27th Annual ACM Symposium on Theory of Computing (STOC 1995), pages 427-436, 1995.
[3] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM J. Comput., 32(6):1488-1508, 2003.
[4] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for compressed rank/select and applications. In Proc. 21st ISAAC, pages 315-326 (part II), 2010.
[5] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary relations and multi-labeled trees. ACM Transactions on Algorithms, 7(4):article 52, 2011.
[6] D. Belazzougui and G. Navarro. New lower and upper bounds for representing sequences. In Proc. 20th ESA, LNCS 7501, pages 181-192, 2012.
[7] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified algorithms for maintaining order in a list. In Proc. 10th Annual European Symposium on Algorithms (ESA 2002), pages 152-164, 2002.
[8] D. Blandford and G. Blelloch. Compact representations of ordered sets. In Proc. 15th SODA, pages 11-19, 2004.
[9] H. Chan, W.-K. Hon, T.-H. Lam, and K. Sadakane. Compressed indexes for dynamic text collections. ACM Transactions on Algorithms, 3(2):article 21, 2007.
[10] H.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynamic collection of texts. In Proc. 15th CPM, LNCS 3109, pages 445-456, 2004.
[11] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proc. 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 365-372, 1987.
[12] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.
[13] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds. Theor. Comput. Sci., 372(1):115-121, 2007.
[14] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proc. 21st STOC, pages 345-354, 1989.
[15] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a tool for text indexing. In Proc. 17th SODA, pages 368-373, 2006.
[16] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc. 14th SODA, pages 841-850, 2003.
[17] R. Grossi, R. Raman, S. R. Satti, and R. Venturini. Dynamic compressed strings with random access. In Proc. 40th International Colloquium on Automata, Languages, and Programming (ICALP 2013), pages 504-515, 2013.
[18] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation for linear lists. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, pages 49-60, 1977.
[19] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. A framework for dynamizing succinct data structures. In Proc. 34th ICALP, pages 521-532, 2007.
[20] M. He and J. I. Munro. Succinct representations of dynamic strings. In Proc. 17th SPIRE, pages 334-346, 2010.
[21] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for searchable partial sums. In Proc. 14th ISAAC, pages 505-516, 2003.
[22] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for searchable partial sums with optimal worst-case performance. Theoretical Computer Science, 412(39):5176-5186, 2011.
[23] J. Jansson, K. Sadakane, and W.-K. Sung. CRAM: Compressed random access memory. In Proc. 39th International Colloquium on Automata, Languages, and Programming (ICALP 2012), pages 510-521, 2012.
[24] T. Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets of an ordered list. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 283-292, 2012.
[25] S. Lee and K. Park. Dynamic rank-select structures with applications to run-length encoded texts. In Proc. 18th CPM, LNCS 4580, pages 95-106, 2007.
[26] S. Lee and K. Park. Dynamic rank/select structures with applications to run-length encoded texts. Theoretical Computer Science, 410(43):4402-4413, 2009.
[27] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text indexes. In Proc. ${ }^{17}$ th CPM, LNCS 4009, pages 307-318, 2006.
[28] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text indexes. ACM Transactions on Algorithms, 4(3):article 32, 2008.
[29] G. Manzini. An analysis of the burrows-wheeler transform. J. ACM, 48(3):407-430, 2001.
[30] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5(2):215-241, 1990.
[31] C. Mortensen. Fully-dynamic two dimensional orthogonal range and line segment intersection reporting in logarithmic time. In Proc. 14th SODA, pages 618-627, 2003.
[32] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations and functions. Theor. Comput. Sci., 438:74-88, 2012.
[33] G. Navarro and Y. Nekrich. Optimal dynamic sequence representations. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages 865-876, 2013.
[34] G. Navarro and Y. Nekrich. Optimal dynamic sequence representations (full version). submitted for publication, 2013.
[35] G. Navarro and K. Sadakane. Fully functional static and dynamic succinct trees. ACM Transactions on Algorithms, 10(3):16, 2014.
[36] M. Patrascu and E. D. Demaine. Tight bounds for the partial-sums problem. In Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages 20-29, 2004.
[37] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4):article 8, 2007.
[38] M. Ruzic. Constructing efficient dictionaries in close to sorting time. In Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP 2008), pages 84-95, 2008.

A. 1 Colored Predecessor Queries

In this section we consider predecessor queries on a linked list, called colored predecessor queries. The result of this section is used in the proof of Lemma 1. Suppose that each entry in an ordered list L is colored with a symbol $a \in \Sigma$ from an alphabet $\Sigma=\{1, \ldots, \sigma\}$. We will also sometimes say that an entry e contains a symbol a. A colored predecessor query $\left(e_{q}, a\right)$ for an entry $e_{q} \in L$ and a symbol $a \in \Sigma$ asks for the rightmost entry $e \in L$ that is colored with a and precedes e_{q}. We consider the problem of answering colored predecessor queries on a dynamic list L. This problem was previously considered by Kopelowitz [24] who described a randomized $O(\log \log m+\log \log \sigma)$ time solution. Mortensen [31] described an $O(\log \log m)$ time solution for the case $\sigma=\log ^{c} n$ and a constant c. We present here a deterministic solution for an arbitrarily large alphabet. This result is also of independent interest.

We start by describing a data structure that uses more than linear space. Then we will show how the space usage can be reduced to linear and how the update time can be decreased.

Lemma 4 Let L be a list with $m \leq n$ entries. There exists an $O\left(m \log ^{2} m\right)$-bit data structure that answers colored predecessor queries on L in $O\left(\log \log m(\log \log \sigma)^{2}\right)$ time and supports insertions and deletions in $O(\log m)$ time.

Proof: For a symbol a, let L_{a} denote the sublist of L that consists of entries containing a. Each entry that contains a is augmented with a pointer to the next and the previous entries in L_{a}. We also store an order maintenance data structure on L. This data structure can determine in $O(1)$ time whether e_{1} precedes e_{2} in L for two arbitrary entries $e_{1} \in L$ and $e_{2} \in L$ in a dynamic list L. We refer to [7, 24] for a description of such a data structure.

We keep a balanced tree T_{L} on L. For a node $u \in T_{L}$, the set $\operatorname{Col}(u)$ consists of all symbols a such that at least one leaf descendant of u contains a. In every leaf of T_{L}, we keep pointers to all its ancestors. For every $a \in C(u)$, we also keep $a \cdot \min (u)$ and $a \cdot \max (u) ; a \cdot \min (u)$ (resp. $a \cdot \max (u))$ points to the leftmost (rightmost) element of L in the subtree of u colored with a.

Suppose that we want to find the rightmost entry $e_{a} \in L$ that contains a symbol a and precedes an entry $e_{q} \in L$. We look for the lowest ancestor u of (the leaf that contains) e_{q} such that $a \in \operatorname{Dict}(u)$. Using binary search on $\log n$ ancestors of e_{q}, we can find u in $O\left(\log \log n(\log \log \sigma)^{2}\right)$ time. If e_{q} is in the right subtree of u, then $e_{a}=a \cdot \max \left(u_{l}\right)$ where u_{l} is the left child of u. If e_{q} is in the left subtree of u, then we find $e_{a}^{\prime}=a \cdot \min \left(u_{r}\right)$ where u_{r} is the right child of u. The entry e_{a}^{\prime} is the leftmost entry that follows e_{q}. Hence the entry e_{a} is the first occurrence of a in L before e_{a}^{\prime}. In other words, e_{a} precedes e_{a}^{\prime} in L_{a}.

When a new element e is inserted into L, we insert it into some leaf l_{e} of T_{L} and a new entry into the corresponding list L_{a}. Insertion into L_{a} requires that we find the rightmost entry e_{a} that is colored with a and precedes e in the list. This takes $O(\log m / \log \log n)$ time as described above. Then we visit all ancestors of l_{e} in T_{L}. If necessary, we add a to $C(v)$ in each visited node v. We keep the tree balanced, using the algorithms of weight-balanced B-tree [3]. The cost of maintaining T_{L} so that its height remains $O(\log m)$ is $O(\log m)$ per insertion. Deletions are symmetric. When an element e is deleted, we remove it from the list L_{a} and update $\operatorname{Dict}(u)$ in at most one ancestor of e. Then we remove the leaf that contains e. The weight-balanced B-tree is not modified after the deletion of a leaf. But when a fraction of leaves is deleted, we construct a new tree T_{L} and discard the old instance of T_{L}. The process of re-building T_{L} can be run in the background so that the total worst-case cost of deleting e is $O(\log m)$.

Lemma 5 Let L be a list with $m \leq n$ entries. There exists an $O(m \log m)$-bit data structure that answers colored predecessor queries on L in $O\left((\log \log \sigma)^{2} \log \log m\right)$ time and supports insertions and deletions in $O\left((\log \log \sigma)^{2} \log \log m\right)$ time.

Proof: We divide every L_{a} into $O\left(\left|L_{a}\right| / \log m\right)$ blocks so that every block contains $O\left(\log ^{2} m\right)$ consecutive entries of L_{a}. If L_{a} consists of more than one block, then we maintain the list L_{a}^{\prime} that contains the first entry from every block of L_{a}. The list L_{1} contains all elements of L_{a}^{\prime} for all symbols a. We keep L_{1} in the data structure of Lemma 4. For any symbol a, all elements of L_{a} are also stored in a data structure T_{a} that supports finger searches [18]: For any element $e_{q} \in L$ and a finger $e_{a}^{\prime} \in L_{a}, T_{a}$ can return the rightmost entry e_{a} that is colored with a and precedes e_{q} in $O(\log d)$ comparisons, where d is the number of entries between e_{a}^{\prime} and e_{a} in L_{a}. Finally we also keep the list L in the union-split-find data structure of Mehlhorn [30]. Using this data structure, we can find the first $e^{\prime} \in L_{1}$ that precedes any $e \in L$ in $O(\log \log m)$ time. The data structure of Mehlhorn et al. 30] uses $O(m)$ words and supports updates in $O(\log \log m)$ time.

In order to find e_{a} colored with symbol a that precedes e_{q}, we find the first entry $e^{\prime} \in L_{1}$ that precedes e_{q}. Then we identify the first entry e_{a}^{\prime} colored with a that precedes e^{\prime}. There are $O\left(\log ^{2} m\right)$ entries of L_{a} between e_{a}^{\prime} and e_{a}. When e_{a}^{\prime} is known, we can find e_{a} in $O(\log \log m)$ time using finger search on T_{a}. The total query time is dominated by the search in L_{1} and equals $O\left(\log \log m(\log \log \sigma)^{2}\right)$.

When a new entry e of color a is inserted, we update L. Then we find the position of e in L_{a} and update L_{a} and T_{a}. We can maintain the sizes of blocks in lists L_{a} so that each block consists of $O\left(\log ^{2} m\right)$ entries and there is one insertion into L_{1} for $O(\log m)$ insertions into L; details will be given in the full version. Thus the total cost of an insertion is $O\left((\log \log \sigma)^{2} \log \log m\right)$. Deletions are symmetric.

A. 2 Prefix Sum Queries on a List

In this section we describe a data structure on a list L that is used in the proof of Lemma in Section 2 .

Lemma 6 We can keep a dynamic list L in an $O(m \log m)$-bit data structure $D(L)$, where m is the number of entries in $L . D(L)$ can find the i-th entry in L for $1 \leq i \leq m$ in $O(\log m / \log \log n)$ time. $D(L)$ can also compute the number of entries before a given element $e \in L$ in $O(\log m / \log \log n)$ time. Insertions and deletions are also supported in $O(\log m / \log \log n)$ time.

Proof: $D(L)$ is implemented as a balanced tree with node degree $\Theta\left(\log ^{\varepsilon} n\right)$. In every internal node we keep a data structure $\operatorname{Pref}(u) ; \operatorname{Pref}(u)$ contains the total number $n\left(u_{i}\right)$ of elements stored below every child u_{i} of $u . \operatorname{Pref}(u)$ supports prefix sum queries (i.e., computes $\sum_{i=1}^{t} n\left(u_{i}\right)$ for any t) and finds the largest j, such that $\sum_{i=1}^{j} n\left(u_{i}\right) \leq q$ for any integer q. We implement $\operatorname{Pref}(u)$ as in Lemma 2.2 in [36] so that both types of queries are supported in $O(1)$ time. $\operatorname{Pref}(u)$ uses linear space (in the number of its elements) and can be updated in $O(1)$ time. $\operatorname{Pref}(u)$ needs a look-up table of size $o\left(n^{\varepsilon}\right)$. To find the i-th entry in a list, we traverse the root-to-leaf path; in each visited node u we find the child that contains the i-th entry using $\operatorname{Pref}(u)$. To find the number of entries preceding a given entry e in a list, we traverse the leaf-to-root path π that starts in the leaf containing e. In each visited node u we answer a query to $\operatorname{Pref}(u)$: if the j-th child u_{j} of u is on π, then we compute $s(u)=\sum_{i=1}^{j-1} n\left(u_{i}\right)$ using $\operatorname{Pref}(u)$. The total number of entries to the left of e is the sum of $s(u)$
for all nodes u on π. Since we spend $O(1)$ time in each visited node, both types of queries are answered in $O(1)$ time. An update operation leads to $O(\log m / \log \log n)$ updates of data structures $\operatorname{Pref}(u)$. The tree can be re-balanced using the weight-balanced B-tree [3], so that its height is always bounded by $O(\log m / \log \log n)$.

A. 3 Updating Data Structure in Lemma 2

When the size of a chunk C_{i} equals 2σ we start the procedure of re-building this chunk. During the next $\sigma / 2$ updates of C_{i} we retrieve all elements of C_{i} and insert them into data structures for new chunks, C_{i}^{\prime} and $C_{i}^{\prime \prime}$. If an update is a deletion of some element e and e was already copied into C_{i}^{\prime} or $C_{i}^{\prime \prime}$, then we remove the copy of e from C_{i}^{\prime} or $C_{i}^{\prime \prime}$. When all elements of C_{i} are copied into C_{i}^{\prime} and $C_{i}^{\prime \prime}$, we say that a chunk C_{i} is a copied chunk. We keep ids of all copied chunks in a data structure L_{d}. Whenever a copied chunk C_{i} is updated we also execute the same update of C_{i}^{\prime} or $C_{i}^{\prime \prime}$.

We also run the following iterative procedure that replaces copied chunks with two chunks. Each iteration starts by finding a chunk C_{i} with the largest number of elements. Then all arrays B_{a} are updated in increasing order of a. We insert a 0 -bit at an appropriate position of B_{a} so that $B_{a}=1^{d_{1}} 0 \ldots 1^{d_{i}} 0 \ldots$ is changed to $B_{a}=1^{d_{1}} 0 \ldots 1^{d_{i}^{\prime}} 01^{d_{i}^{\prime \prime}} 0 \ldots$ where d_{i}, d_{i}^{\prime} and $d_{i}^{\prime \prime}$ denote the number of a 's that occur in C_{i}, C_{i}^{\prime} and $C_{i}^{\prime \prime}$ respectively. We keep a variable lastsym that equals the largest symbol a, such that B_{a} is already updated. When all B_{a} are modified in the above manner, we also update B_{t} and change it from $B_{t}=1^{n_{1}} 0 \ldots 1^{n_{i}} 0 \ldots$ to $B_{t}=1^{n_{1}} 0 \ldots 1^{n_{i}^{\prime}} 01^{n_{i}^{\prime \prime}} 0 \ldots$ where n_{i}, n_{i}^{\prime} and $n_{i}^{\prime \prime}$ denote the total number of symbols in C_{i}, C_{i}^{\prime} and $C_{i}^{\prime \prime}$ respectively. Finally we delete the id of C_{i} from L_{d} set lastsym $=0$ and start the next iteration. Every iteration takes $O(\sigma)$ time. When a chunk is added to L_{d}, its size does not exceed $5 \sigma / 2$. Using Theorem 5 in [11], we can show that the size of each chunk in L_{d} grows by at most by $\sigma \cdot O\left(h_{n}\right)$ where $h_{n}=O(\log n)$ denotes the n-th harmonic number.

We slightly modify the method for answering a select query. Let k denote the index of the last chunk that was retrieved from L_{d}. That is, the above described iterative procedure is currently changing bit vectors B_{a} and B_{t} changing $B_{a}=\ldots 1^{d_{k}} 0 \ldots$ to $\ldots 1^{d_{k}^{\prime}} 01^{d_{k}^{\prime \prime}} 0 \ldots$ and $B_{t}=\ldots 1^{n_{k}} 0 \ldots$ to $\ldots 1^{n_{k}^{\prime}} 01^{n_{k}^{\prime \prime}} 0 \ldots$. To answer a query $\operatorname{select}_{a}(i, S)$, we first find the index i_{2} of the chunk $C_{i_{2}}$ that contains the i-th occurrence of $i, i_{2}=\operatorname{rank}_{0}\left(\operatorname{select}_{1}\left(i, B_{a}\right), B_{a}\right)+1$. If $i_{2}<k$ or $a>$ lastsym, we proceed as described in the proof of Lemma 2, If $i \geq k$ and $a \leq$ lastsym, we decrement i_{2} by 1 , $i_{2}=i_{2}-1$ and also proceed as in Lemma 2.

We also keep track of the number of chunks that contain no more than σ elements. If there are at least $n / 2 \sigma$ chunks containing at most σ symbols, then we start a global re-building procedure. We retrieve all elements of S and insert them into a new data structure. In the new data structure all elements are distributed among chunks, so that each chunk contains σ elements. The global re-building process is executed during $n / 4 \sigma$ updates.

A. 4 Re-Building Compressed Data Structure in the Background

As shown in Section 4, we must bound the total number of symbols in S_{0} by $O(n / r)$ for a parameter r. We must also bound the number of symbols in S_{i} for $i \geq 1$ that are marked as deleted by $O(n / r)$. We run two alternating processes in the background to satisfy these requirements. In order to bound the workspace we process sub-sequences S_{i} one-by-one. For every $i, 1 \leq i \leq r$, we produce a new
version S^{\prime} of S_{i} containing all relevant elements of S_{0} (i.e., all elements of S_{0} that precede the first element of S_{i+1} and follow the last element of S_{i-1} in S. In order to navigate in the new version of S_{i}, we must modify parts of auxiliary sequences (such as R, \tilde{S}, \tilde{E}, and \tilde{B}). Therefore our background process also produces new versions for the relevant portions of auxiliary sequences. When the new version of S_{i} is created, we discard the old version; we also replace the parts of auxiliary sequences with their new versions. The second background process removes elements marked as deleted and updates S_{i} in the same manner. A more detailed description follows.

We conceptually divide S_{0} into r substrings $S_{0, i}$ for $1 \leq i \leq r$. An element $e \in S_{0}$ is in $S_{0, i}$ for $1<i<r$ iff e precedes the first element of S_{i+1} in S and follows the last element of S_{i-1} in S. An element $e \in S_{0}$ is in $S_{0,1}$ if e precedes the first element of $S_{2} ; e \in S_{0}$ is in $S_{0, r}$ if e follows the last element of $S_{r_{-1}}$. Likewise the sequence \tilde{S} is conceptually divided into r substrings $\tilde{S}_{1}, \ldots, \tilde{S}_{r}$. An element $e \in \tilde{S}$ is in \tilde{S}_{i} for some $i \geq 1$ if e is a copy of some $e^{\prime} \in S_{i}$ or e is a copy of some $e^{\prime} \in S_{0}$ and $e^{\prime} \in S_{0, i}$. We conceptually divide the binary sequence R using the same principle: $R[j]$ is in R_{i} if the j-th element of S is from S_{i} or the j-th element of S is some $e^{\prime} \in S_{0}$ such that $e^{\prime} \in S_{0, i}$. Other binary sequences are divided in the same way. The procedure for moving elements of S_{0} into S_{i} for some $i, 1 \leq i \leq r$, is as follows.
Step 1 We start by creating a new instance S^{c} of S_{i} and a new instance \tilde{S}^{c} of \tilde{S}^{i}; we also create new instances of R^{i} and the i-th parts of other binary sequences; namely R^{c}, D_{a}^{c} for all $a \in \Sigma$ such that a occurs in S_{i}, \tilde{B}^{c} and \tilde{E}^{c} are copies of $R_{i}, D_{a, i}, \tilde{B}_{i}$ and \tilde{E}_{i} respectively. The cost of creating new instances for parts of auxiliary sequences can be distributed among the following updates of S, as will be explained below. At the end of Step $1, R^{c}$ is a copy of R_{i}; likewise D_{a}^{c}, \tilde{B}^{c} and \tilde{E}^{c} are copies of $D_{a, i}, \tilde{B}_{i}$ and \tilde{E}_{i} respectively. These newly created sequences will be called copy sequences.

Step 2 Then we insert the elements of $S_{0, i}$ at appropriate positions of S_{i}^{c}. We modify the sequence \tilde{S}^{c} accordingly. Changes in \tilde{S}^{c} and S_{i}^{c} also lead to changes in copy sequences $R^{c}, D_{a}^{c}, \tilde{B}^{c}$ and \tilde{E}^{c}. We distribute the cost of Step 2 among updates of S. We will say that all elements that are kept in S_{0} (resp. in S_{0}^{c}) upon completion of Step 1 are old elements. When a sequence S is updated, we spend $O(\log n / \log \log n)$ time on the following actions: (i) we find the next unprocessed element e_{n} in S_{0}^{c} (symbols in S_{0}^{c} are processed in the left-to-right order); we set the bit corresponding to e_{n} in R^{c} to 1 (ii) we insert e_{n} at appropriate position of S_{i}^{c} (iii) if necessary, we update \tilde{S}^{c}; copy sequences \tilde{B}^{c} and \tilde{E}^{c} are updated accordingly. We may also need to update copy sequences after an update of S. If the update of S is an insertion, and a new element e is inserted into $S_{0, i}$, then we also insert e into S_{0}^{c}. If an element e is deleted and $e \in S_{0, i}$, then we remove the copy of e from S_{0}^{c}; changes in S_{0}^{c} can also lead to changes in \tilde{S}^{c}. If a symbol a is deleted from S_{i}, then we update D_{a}^{c} accordingly.

Step 3 When S_{i}^{c} is completed, we discard old S_{i}, set $S_{i}=S_{i}^{c}$, and start using the new S_{i} from now on. Simultaneously we replace the relevant section of \tilde{S} with \tilde{S}^{c}. We also replace the relevant parts of R, D_{a}, \tilde{B} and \tilde{E} with $R^{c}, D_{a}^{c}, \tilde{B}^{c}$ and \tilde{E}^{c}.

In order to execute the above background process, we must implement binary sequences, so that two additional procedures are supported: A binary sequence of length m is divided into r sectors (substrings) of length $O(m / r)$ each. We can produce a copy of each sector. The cost of producing a copy is distributed among $\frac{m \log \log n}{2 r \log n}$ updates; when the procedure is finished, the sector and its
copy are equal. We can perform updates on the original sequence and on a sector copy. We can also replace a sector with its copy and discard the original sector. Same procedures are also supported for the non-binary sequence \tilde{S}. We can implement these procedures in such way that the cost of rank, select, access, and updates is not increased. Implementation of auxiliary procedures is explained in Section A. 5 .

Step 1 of the above process takes $O(n / r)$ time. Step 2 (insertion of new elements into S_{i}) takes $O\left(v_{i}(\log n / \log \log n)\right)$ time, where v_{i} is the number of elements inserted into S_{i}^{\prime}. Step 3 takes $O(\log n / \log \log n)$ time. Thus old elements of S_{0} are moved to S_{i} for $i \geq 1$ in $O(n)+$ $\sum_{i} v_{i}(\log n / \log \log n)=O(n)$ time. This process can be distributed among $n / 4 r$ updates.

The process of purging the sequences S_{1}, \ldots, S_{r} is based on the same approach. For each $i=1, \ldots, r$, we create a new instance of S_{i} without deleted elements; then we discard the old instance and start using the new version of S_{i}. Relevant parts of \tilde{S} and binary sequences are also updated. The re-building of S_{i} is implemented in the same way as in the procedure of moving elements from S_{0} to S_{i} for $i \geq 1$. The cost of purging S_{i} is distributed among $n / 4 r$ following updates. Two above described background processes are run alternatingly; the first process starts when the either the number of elements in S_{0} or the number of elements marked as deleted is equal to $n / 4 r$. In this way we guarantee that the number of elements in S_{0} and the number of deleted elements does not exceed n / r.

A. 5 Auxiliary Procedures for Binary and Non-Binary Sequences

In this section we show how a sequence S can be stored in such a way that additional processes that create a copy for a part of S are supported. Furthermore we can update the copied part and later replace the original part with its modified copy. We start by describing a binary sequence that supports an additional operation $\operatorname{init}(S, m) ; \operatorname{init}(S, m)$ initializes an empty sequence of length m that consists of $m 0$-bits. Recall that $\lambda=\log n / \log \log n$.

Lemma 7 A binary sequence S that supports $\operatorname{rank}_{1}(i, S)$, $\operatorname{select}_{1}(i, S)$, access (i, S), insertions, deletions and $\operatorname{init}(S, m)$ for any $m \leq n$ can be stored in $O\left(s \log \frac{n}{s}\right)+o(n)$ bits, where s is the number of 1-bits and n is the length of the sequence. All operations, except for init (S, m) take $O(\lambda)$ time; $\operatorname{init}(S, m)$ can be executed in $O(1)$ time.

Proof: We divide the sequence S into blocks B_{i} such that each B_{i} consists of $\Theta\left(\log ^{2} n\right)$ bits. Each block is further divided into sub-blocks of $\Theta\left(\log ^{1 / 2} n\right)$ bits. We will say that a block or a subblock is non-empty if it contains at least one 1-bit. A doubly-linked list L contains one entry for each non-empty block. We also keep a list L_{i} for every block B_{i} that contains 1-bits; L_{i} contains one entry for each non-empty sub-block. For each entry e_{i} of L we keep the number of 1 's in the corresponding block B_{i}; we also keep the total number of bits in blocks $B_{j+1}, B_{j+2}, \ldots, B_{i-1}$, where B_{j} is the rightmost non-empty block that precedes B_{i}. We maintain a data structure that enables us to find the block that contains the i-th bit in the sequence. We also maintain a data structure that can find the block containing the i-th 1 -bit (or 0 -bit) and the number of 1 -bits (0 -bits) that precede a specified block. We maintain the same data structure for each sub-block. All these data structures are implemented as balanced trees with node degree $\log ^{\varepsilon} n$ for a small constant $\varepsilon>0$. Each node is augmented with additional information about the number of 1-bits (resp. the total number of bits) in the subtrees of its children. Implementation is the same as for data structures $D(L)$ and $D\left(L_{a}\right)$ in Lemma 1 .

Positions of 1-bits in the same sub-block are difference coded: for every 1-bit we store the difference between its position and the position of the preceding 1-bit in the same block; for the first 1-bit in the block, we store its position in the block. The list L and its data structures can be kept in $O(n / \log n)$ bits. All lists L_{i} and their data structures are kept in $O(n(\log \log n / \sqrt{\log n}))$ bits. Difference coding of 1-bits in all blocks consumes $O\left(s \log \frac{n}{s}\right)$ bits.

To answer a query $\operatorname{rank}_{1}(i, S)$ we find the block B_{i} and its sub-block $B_{i, j}$ containing the i-th bit. Then we find the number of 1-bits that precede B_{k} in L and the number of 1-bits that precede $B_{k, j}$ in L_{k}. We can find the number of 1-bits that precede the bit with global position i in $B_{k, j}$ using a look-up table. Summing three above values, we obtain $\operatorname{rank}_{1}(i, S)$. Queries select ${ }_{1}(i, S), \operatorname{rank}_{0}(i, S)$, and $\operatorname{rank}_{1}(i, S)$ are computed in a similar way. Thus all queries are answered in $O(\log n / \log \log n)$ time.

Since we only keep non-empty blocks and sub-blocks, operation init (S, m) takes constant time. Insertions and deletions are implemented as in previously known data structures supporting rank and select on binary sequences. When an element is inserted, we find its block B_{i} and its sub-block; we insert the new element into its sub-block and update lists L and L_{i} if necessary. We maintain sizes of blocks and sub-blocks using standard techniques. Deletions are symmetric. Hence insertions and deletions are supported in $O(\log n / \log \log n)$ time.

Now we describe how a copy of a binary sequence S can be created. Let $\lambda=\log n / \log \log n$.
Lemma 8 Let S be a binary sequence of length s. Procedure copy(), that produces a copy of S, can be implemented as a background process that runs during $O(s / \log n)$ consecutive updates. We can support updates on the original sequence and its copy in $O(\lambda)$ time. Operations rank, select, and access are executed in $O(\lambda)$ time. The underlying data structure uses $s H_{0}(S)+s+o(s)$ bits.

Proof: The procedure for creating a copy S^{\prime} of S consists of two stages. During the first stage we produce a copy of $S . S$ is represented in the same way as in [35]. As described in [35], S is split into chunks and we maintain data structures that support counting the number of 0-bits (resp. 1 -bits) among the chunks and searching for the chunk that contains the i-th 0 -bit (or 1-bit). We can create a copy by copying the original sequence of chunks. The data structure that supports counting and searching among chunks is essentially a tree with $O\left(s^{\prime}\right)$ nodes; we can create this tree in $O\left(s^{\prime}\right)$ time, where $s^{\prime}=O(s / \log n)$ is the number of chunks.

Thus the background process that creates a copy of S takes $O(s / \log n)$ time. We can distribute its cost among $O(s /(\lambda \log n))$ updates where $\lambda=\log n / \log \log n$. We keep information about these updates in four data structures. The data structure U keeps information about positions of updates: the i-th 1-bit in a sequence U is the position of the i-th update (insertion or deletion) in S. Thus U contains one bit for every element in S and one bit for every element that was deleted from S. Updates are counted in the left-to-right order and U is implemented as in Lemma 7. We also keep a bit sequence T which indicates the type of updates on $S: T[i]=0$ if the i-th update stored in U is a deletion and $T[i]=1$ if the i-th update is an insertion. The sequence B_{n} contains the values of elements inserted into S. A sequence U_{d} helps us navigate between S and $U ; U_{d}$ contains one bit for every element in S and one bit for every element that was deleted from S. If $U_{d}[j]=1$, then the corresponding element was already deleted from S; if $U_{d}[j]=0$, then the corresponding element is in S. During each update, we perform the following operations:

- a new element is inserted into or deleted from S at position i
- Let $i^{\prime}=\operatorname{select}_{0}\left(i, U_{d}\right)$ be the position of the i-th 0 -bit in U_{d}. If the update of S is an insertion, we insert a 1 -bit into U_{d} at position i^{\prime}. If the update is a deletion, we replace the i^{\prime}-th bit in S with a 0 -bit (replacement is implemented by deleting a 1 -bit and inserting a 0 -bit at the same position).
- If the update of S is an insertion, we insert a 1-bit at position i^{\prime} into U; if the update is a deletion we replace the i^{\prime}-th bit of U with a 1-bit. We also insert a bit indicating the type of update into the sequence T. If an update is an insertion, we add the value of a new bit into a bit sequence B_{n}.
- we spend $O(\lambda)$ time on constructing a copy sequence.

The first stage is finished after $O(s /(\lambda \log n))$ updates of S. When the first stage is completed, S and its copy sequence S^{\prime} differ because $O(s /(\lambda \log n))$ most recent updates changed the original sequence but were not performed on its copy. During the second stage we synchronize S and S^{\prime}. The synchronisation procedure is also distributed among $O(s / \lambda \log n)$ updates. During every update operation, we proceed as follows:

- a new element is inserted into S or deleted from S. We also change the copy sequence S^{\prime} accordingly. If the position i of an element in S is known, then we can find its position i_{n} in S^{\prime} using sequences U_{d}, U and T. Using U_{d}, we find the position $i_{d}=\operatorname{select}_{0}\left(i, U_{d}\right)$ corresponding to i in U. Using U, we find the number u of updates that precede i_{d}; using T we can find the number of insertions and deletions among the first u updates.
- we also execute updates stored in sequences U, T, and B_{n}. We retrieve the position $i=$ $\operatorname{select}_{1}(1, U)$ of the first 1-bit stored in U and find the position i^{\prime} in S^{\prime} that corresponds to the position i in S. Then we either insert a new element at the position i^{\prime} or remove the i^{\prime}-th element from S^{\prime} according to the data stored in T and B_{n}. Finally we delete the i-th bit from U and U_{d}. We also delete the corresponding bit from T and remove the corresponding symbol from B_{n} (if the processed update is an insertion).
At the end of the second stage S^{\prime} and S are equivalent.
Now we consider the sequence S of length s that is divided into s / r contiguous parts for $r=$ $\log { }^{O(1)} n$. Each part, called a sector of S, consists of $O(s / r)$ elements. The procedure copysector () creates a copy of an arbitrary sector. The procedure copysector () can be executed in the background during a sequence of $s /(r \lambda)$ updates. Furthermore we can split a sector into two sectors and merge two adjacent sectors in the same time. Last, we can also replace a sector with its copy in $O(r)$ time. Update operations are supported on both S itself and on the copy of a sector (we assume that at any time a copy of only one sector is created or used).

Lemma 9 Let S be a binary sequence of length $s \leq n$ and let S be divided into r sectors of $O(s / r)$ symbols. Procedure copysector () , that produces a copy of a sector, can be implemented as a background process that runs during $O(s /(r \lambda \log n))$ consecutive updates. Procedures splitsector () and mergesectors () can be executed in the same way. Operation replacesector () can be executed in $O(\log \log n)$ time. The underlying data structure uses $s H_{0}(S)+o(n)$ bits.

Proof: Every sector is maintained in the data structure of Lemma Furthermore we maintain a sequence G that keeps the numbers of elements in every sector. Sequences G_{0} and G_{1} maintain the number of 0 's and 1's in every sector. Using G and data structures for individual sectors, we can
answer rank, select, and access queries on S. Procedure copysector () is implemented as $\operatorname{copy}()$ on a sector of S. When a copy of a sector is ready, we can support updates on this copy. Besides we can also replace a sector with its copy and update the data structure on the sequence G accordingly; this operation takes $O(\log \log n)$ time. Splitting and merging of sectors is implemented in a similar way. Suppose that we want to split a sector S_{i} into S_{i}^{\prime} and $S_{i}^{\prime \prime}$. We employ the same two-stage procedure that was used to create a copy of a sector. During the first stage we assign elements of S_{i} to S_{i}^{\prime} and $S_{i}^{\prime \prime}$. Then we create the data structures for S_{i}^{\prime} and $S_{i}^{\prime \prime}$. Updates that are relevant for new versions are deposited in data structures U_{1}, T_{1}, B_{1} and U_{2}, T_{2}, B_{2} respectively. During the second stage we execute updates stored in U_{i}, T_{i}, and B_{i} for $i=1,2$. Auxiliary data structures are realized in the same way as in the procedure copysector (). When new sectors S_{i}^{\prime} and $S_{i}^{\prime \prime}$ are ready, we replace S_{i} with S_{i}^{\prime} and $S_{i}^{\prime \prime}$ and update G.

We can implement similar procedures for a sequence over a general alphabet. We assume, however, that copies of sectors are produced consecutively: first copy of the first sector is created; when the first sector is replaced with a (possibly modified) copy sector, we create the copy of the next sector, etc. In this scenario, it is easy to maintain the dynamic sequence that supports the copying, splitting and merging of sectors.

Lemma 10 Let S be a sequence of length $s \leq n$ over an alphabet $\Sigma=\{1, \ldots \sigma\}$ and let S be divided into r sectors. Procedure copynextsector(), that produces a copy of a sector, can be implemented as a background process that runs during $O(s /(r \lambda))$ consecutive updates. Procedures splitnextsector () and mergesectors() can be executed in the same way. Operation replacenextsector can be executed in $O(\lambda)$ time. The data structure for S uses $O(s \log \sigma)$ bits.

Proof: Elements of S are distributed among two dynamic data structure, $S_{\text {old }}$ and $S_{\text {new }}$. Both of them are implemented as in Lemma 2, Originally $S_{\text {new }}$ is empty and all elements of S are in $S_{\text {old }}$. Procedure copynextsector () traverses elements of the next sector and appends them at the end of the new sequence $S_{\text {new }}$. When replacenextsector () is executed for the last (rightmost) sector, we set $S_{\text {old }}=S_{\text {new }}$ and $S_{\text {new }}=\emptyset$. Let i_{p} denote the number of elements in all sectors of $S_{\text {old }}$ for which operation replacenextsector () was executed. Let i_{m} denote the total number of elements currently kept in $S_{\text {new }}$. We can answer access (i, S) by retrieving $S_{\text {new }}[i]$ if $i \leq i_{m}$ or retrieving $S\left[i-i_{m}+i_{p}\right]$ if $i>i_{m}$. We can answer a query $\operatorname{rank}_{a}(i, S)$ as follows. If $i \leq i_{m}, \operatorname{rank}_{a}(i, S)=\operatorname{rank}_{a}\left(i, S_{\text {new }}\right)$. If $i>i_{m}, \operatorname{rank}_{a}(i, S)=\operatorname{rank}_{a}\left(i-i_{m}+i_{p}, S_{\text {old }}\right)$. To answer a query $\operatorname{select}_{a}(i, S)$ we check whether $\operatorname{rank}_{a}\left(i_{m}, S_{\text {new }}\right) \geq i$. If this condition is satisfied, then $\operatorname{select}_{a}(i, S)=\operatorname{select}_{a}\left(i, S_{\text {new }}\right)$; otherwise $\operatorname{select}_{a}(i, S)=\operatorname{select}_{a}\left(i^{\prime}, S_{\text {old }}\right)$ where $i^{\prime}=i-\operatorname{rank}_{a}\left(i_{m}, S_{\text {new }}\right)+\operatorname{rank}_{a}\left(i_{p}, S_{\text {old }}\right)$.

A. 6 Analysis

We show that deleting n / r symbols from a sequence S does not increase too much the k-th order entropy. This result is needed in Section 医to prove the space bound of $n H_{k}+o(n \log \sigma)+O(n(\log n) / r)$. Let $S=S[1] \ldots S[n]$. Let S_{0} denote the subsequence of symbols that are deleted from S and let $S_{n}=S \backslash S_{0}$. Let $\left|S_{0}\right|=n / r$ for a parameter r. We want to estimate $\left|S_{n}\right| H_{k}\left(S_{n}\right)-|S| H_{k}(S)$ for some parameter $k \leq \alpha \log _{\sigma} n-1$ and $\alpha<1$.

A context c_{i} is an arbitrary sequence of length k over an alphabet σ; let $f_{a, i}$ denote the number of times a symbol a is preceded by context c_{i} in S and $n_{i}=\sum_{a \in \Sigma} f_{a, i}$. The k-th order empirical entropy is defined as $\sum_{c_{i} \in \Sigma^{k}} \sum_{a \in \Sigma} f_{a, i} \log \frac{n_{i}}{f_{a, i}}$.

For a context c_{l}, let n_{l} be the number of times it occurs in S and let n_{l}^{\prime} be the number of times it occurs in $S \backslash S_{0}$. Suppose that a symbol $S[i]$ is deleted. It changes the context for the next k symbols $S[i+1], \ldots, S[i+k]$. We will say that one deletion spoils k symbols and moves them to a different context. If a symbol $S[l]$ is spoiled and the context of $S[l]$ in S_{n} is c_{l}, then $S[l]$ is encoded with at most $\log \left(n_{l}^{\prime}\right)$ bits. Let $p_{l}=n_{l}^{\prime}-n_{l}$ be the number of new symbols in the context c_{l}. Let $f_{a, l}^{\prime}$ be the frequency of a new symbol a in c_{l} (that is, the number of times a spoiled symbol a appears in the context c_{l} in S_{n}). Then the total encoding length of spoiled symbols in the context c_{l} does not exceed $\sum_{a} f_{a, l}^{\prime} \log \frac{n_{l}^{\prime}}{f_{a, l}^{\prime}}$ where $\sum_{a} f_{a, l}^{\prime}=p_{l}$. By Jensen's inequality, $\sum_{a} f_{a, l}^{\prime} \log \frac{n_{l}^{\prime}}{f_{a, l}^{\prime}} \leq p_{l} \log \frac{n_{l}^{\prime}}{p_{l} / \sigma}$. Summing over all contexts c_{l}, the total encoding length of spoiled symbols can be bounded by $\sum_{l} p_{l}\left(\log \frac{n_{l}^{\prime}}{p_{l}}+\log \sigma\right)$.

The total number m of symbols that are spoiled is between n / r and $(n / r) k-1$ because each deletion spoils between 1 and k following symbols. The number of spoiled symbols does not exceed n independently of r and k. Hence $\sum_{l} p_{l} \leq(n / r) \log _{\sigma} n$. Besides $\sum_{l} p_{l} \leq \sum_{l} n_{l}^{\prime} \leq n$. Therefore $\sum_{l} p_{l} \log \frac{n_{l}^{\prime}}{p_{l}}=O(n)$. To prove the latter fact, we divide all contexts c_{l} into classes $L_{1}, L_{2}, \ldots, L_{\log ^{*} n}$. L_{i} contains all context indices l, such that $f_{i-1}(n)>\frac{n_{l}^{\prime}}{p_{l}} \geq f_{i}(n)$, where $f_{0}(n)=n$ and $f_{i}(n)=$ $\left(\log ^{(i)} n\right)^{2}$ for $i \geq 1$. For any $L_{i}, \sum_{l \in L_{i}} p_{l} \log \frac{n_{l}^{\prime}}{p_{l}} \leq \frac{n}{\left(\log ^{(i)} n\right)^{2}} \log \left(f_{i-1}(n)\right)=\frac{n}{\left(\log ^{(i)} n\right)^{2}} O\left(\log ^{(i)} n\right)=$ $O\left(\frac{n}{\log ^{(i)} n}\right)$. Hence $\sum p_{l} \log \frac{n_{l}^{\prime}}{p_{l}}=\sum_{i=1}^{\log ^{*} n} \sum_{l \in L_{i}} p_{l} \log \frac{n_{l}^{\prime}}{p_{l}}=n \sum_{i=1}^{\log ^{*} n} O\left(\frac{1}{\log ^{(i)} n}\right)$. Hence $\sum \frac{n_{l}^{\prime}}{p_{l}}=O(n)$ because $\sum_{i=1}^{\log ^{*} n} \frac{1}{\log ^{(i)} n}=O(1)$. Thus the total encoding length of all spoiled symbols is bounded by $E_{\text {add }}=O\left(n\left(1+\frac{\log n}{r}\right)\right)$.

Another factor that may increase the encoding length is that spoiled symbols are moved to new contexts and thus the encoding length of all other symbols in these new contexts slightly increases. Consider a context c_{i} that occurred n_{i} times in S and $n_{i}+f_{i}$ times in $S \backslash S_{0}$ for some $f_{i}>0$. We say that a symbol $S[l]=a$ that follows c_{i} in $S \backslash S_{0}$ is an old occurrence if this occurrence of a is also preceded by c_{i} in S. The encoding length for all old occurrences in S_{n} is $\sum_{a=1}^{\sigma}{ }^{\circ}{ }^{\circ} c_{a, i} \log \frac{n_{i}+f_{i}}{0 \operatorname{ccc} a, i}$. The total encoding length for the same occurrences in S is $\sum_{a=1}^{\sigma} \mathrm{occ}_{a, i} \log \frac{n_{i}}{\operatorname{occ} a, i}$. The difference between encoding lengths of old occurrences in S and S_{n} is $\operatorname{inc}\left(c_{i}\right)=n_{i} \log \frac{n_{i}+f_{i}}{n_{i}}$. If $f_{i} \leq n_{i}$, then $\operatorname{inc}\left(c_{i}\right) \leq n_{i}$. Summing up the differences over all contexts c_{i} such that $f_{i} \leq n_{i}$, we obtain $E_{1} \leq \sum_{i} n_{i} \leq n$. If $f_{i}>n_{i}$, then $\operatorname{inc}\left(c_{i}\right) \leq n_{i}\left(\log \frac{f_{i}}{n_{i}}+1\right)$ Summing up over all contexts c_{i} such that $f_{i}>n_{i}$, we get $E_{2}=\sum_{i} n_{i}\left(\log \frac{f_{i}}{n_{i}}+1\right)$. Since $\sum_{i} n_{i}<\sum_{i} f_{i} \leq n, \sum_{i} n_{i}<n$ and $\sum_{i} n_{i} \log \frac{f_{i}}{n_{i}} \leq n$. Hence, $E_{2}=O(n)$.

Thus $\left|S_{n}\right| H_{k}\left(S_{n}\right)-|S| H_{k}(S)=E_{\text {add }}+E_{1}+E_{2}=O\left(n\left(1+\frac{\log n}{r}\right)\right)$. We must also account for elements that are marked as deleted, but are still stored in sequences S_{i} for $i \geq 1$. The number of elements that are marked as deleted is bounded by $O(n / r)$. These elements need $O\left(n \frac{\log n}{r}\right)$ bits. Every deleted element spoils up to k symbols of S. Using the same analysis as above, the extra encoding length due to spoiled symbols can be estimated to be $O\left(n\left(1+\frac{\log n}{r}\right)\right)$. Thus all static sequences S_{i} for $i \geq 1$ are stored in $n H_{k}+O\left(n\left(1+\frac{\log n}{r}\right)\right)$ bits.

A. 7 Static Data Structure

In this section we describe a static data structure supporting access, rank and select queries. In comparison to previous static data structures, we obtain two additional results. Our data structure
can be constructed quickly if the alphabet size σ is small. At the same time we show that our data structure supports extraction of a substring of length ℓ in optimal $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time. As before, let S denote a sequence of length n over an alphabet $\Sigma=\{1 \ldots, \sigma\}$.

Our static representation keeps the sequence S in compressed form following the approach of [13]. S is represented as a sequence S^{M} of meta-symbols over an alphabet Σ^{ℓ} for $\ell=\left\lceil\frac{\log _{\sigma} n}{2}\right\rceil$. That is, each meta-symbol encodes ℓ symbols of the original sequence. It is shown in [13] that $H_{0}\left(S^{M}\right) \leq$ $H_{k}(S)+(n / \ell) k \log \sigma$ simultaneously for all $k \leq \ell$. We can keep S^{M} in $(n / \ell)\left(H_{0}\left(S^{M}\right)+O(1)\right)$ bits using e.g. Huffman coding.

Data Structure for Rank and Select Queries. We split S into blocks of size σ. For every $a \in[1, \sigma]$, we keep a binary sequence $B_{a}=1^{s_{1}} 01^{s_{2}} 0 \ldots 1^{s_{l}} 0$ where s_{i} denotes the number of a 's occurrences in the i-th block. It was shown in 5 how query $\operatorname{rank}_{a}(i, S)$ or $\operatorname{select}_{a}(i, S)$ can be reduced to $O(1)$ rank and select queries on a block C and $O(1)$ queries on B_{a}. The data structure for a block C is as follows. We keep a bit vector $V=1^{n_{1}} 01^{n_{2}} 0 \ldots 1^{n_{\sigma}}$ where n_{a} is the number of times a occurs in C. Let $\pi(i)$ denote the position of $C[i]$ in the stable sorted ordering. That is, π is the permutation of C obtained by stably sorting the symbols of C. Let π^{-1} denote the inverse of π. Then select ${ }_{a}(i, C)=\pi^{-1}(j)$ where $j=\left(\sum_{g=1}^{a-1} n_{g}\right)+i$. We can find $\sum_{g=1}^{p} n_{g}$ for any $p \leq \sigma$ by answering one rank and one select query on V.

Let $t=\log \sigma /(\log \log \sigma)^{3}$. For every symbol $a, 1 \leq a \leq \sigma$, the set F_{a} contains every t-th occurrence of a in C; that is F_{a} contains all j such that $C[j]=a$ and $\operatorname{rank}_{a}(j, C)=t \cdot i$ for some integer i. We keep a y-trie data structure on F_{a}, so that for any q we can find the largest $j \in F_{a}$ satisfying $j \leq q$. Furthermore we store values of $\operatorname{rank}_{a}(j, C)$ for all $j \in F_{a}$. For each symbol $C[j]$, we also keep $R[j]=\left(\operatorname{rank}_{C[j]}(j, C) \bmod t\right)$. We need $\sigma \log t$ bits to store the array R and $O((\sigma / t) \log \sigma)=O\left(\sigma(\log \log \sigma)^{3}\right)$ bits to store F. Hence the total space usage is $o(\sigma \log \sigma)$.

Let $\operatorname{rank}_{a}^{\prime}(i, S)$ denote the partial rank query: if $S[i]=a, \operatorname{rank}_{a}^{\prime}(i, S)=\operatorname{rank}_{a}(i, S)$; otherwise $\operatorname{rank}_{a}^{\prime}(i, S)$ is undefined. If $C[i]=a, \operatorname{rank}_{a}^{\prime}(i, C)=R[i]+\operatorname{rank}_{a}(j, C)$ where j is the largest position in F_{a} such that $j \leq i$. Since j can be found in $(\log \log \sigma)$ time, $\operatorname{rank}_{C[i]}^{\prime}(i, C)$ can be computed in $O(\log \log \sigma)$ time. We can compute $\pi(i)$ as follows. If $C[i]=a$, then $\pi(i)=\left(\sum_{j=1}^{a-1} n_{j}\right)+\operatorname{rank}_{a}^{\prime}(i, C)$. Since rank' can be computed in $O(\log \log \sigma)$ time, we can find $\pi(i)$ for any i in $O(\log \log \sigma)$ time. Using the data structure of [32], we can compute $\pi^{-1}(i)$ in $O(t \cdot f(\sigma))$ time using $O(n \log \sigma / t)$ additional bits, where $f(\sigma)$ is the time needed to compute $f(\sigma)$. This data structure works as follows: We decompose the permutation $\pi=\pi(1), \pi(2), \ldots, \pi(\sigma)$ into cycles. A cycle is the shortest subsequence i_{1}, \ldots, i_{s} of π such that $\pi\left(i_{j}\right)=i_{j+1}$ for $1 \leq j<s$ and $\pi\left(i_{s}\right)=i_{1}$. For every cycle of length $s \geq t$, we select every t-th element and mark it. We keep the value of π^{-t} for the marked elements where π^{-t} denotes the inverse of π iterated t times. In order to find $\pi^{-1}(i)$, we compute $\pi(i), \pi^{2}(i)=\pi(\pi(i)), \pi^{3}(i), \ldots$ until we reach a marked position i_{m} or $\pi^{k}(i)=i$ for some k. If $\pi^{k}(i)=i$, then $\pi^{-1}(i)=\pi^{k-1}(i)$. If we reached a marked position i_{m}, we compute $i^{\prime}=\pi^{-t}\left(i_{m}\right)$. Then we identify $\pi\left(i^{\prime}\right), \pi^{2}\left(i^{\prime}\right), \ldots$ until $\pi^{l}\left(i^{\prime}\right)=i$. Clearly $\pi^{-1}(i)=\pi^{l-1}\left(i^{\prime}\right)$ in this case. It is easy to check that we must compute π at most t times; details can be found in [32]. Thus $\pi^{-1}(i)$ is computed in $O(t \cdot \log \log \sigma)$ time. We already showed how to answer select query using π^{-1}. Hence $\operatorname{select}_{a}(i, C)$ is also answered in $O(t \log \log \sigma)$ time. To answer a rank query $\operatorname{rank}_{a}(i, C)$, we first find the largest $j \in F_{a}$ such that $j \leq i$. If $\operatorname{rank}_{a}(j, C)=s \cdot t$, then $s t \leq \operatorname{rank}_{a}(i, C)<(s+1) t$. We can find the exact value of $\operatorname{rank}_{a}(i, C)$ by answering $O(\log t)$ select queries as described in [15, 5]. Hence $\operatorname{rank}_{a}(i, C)$ is computed in $O(t \log t \log \log \sigma)$ time. We set $t=\log \sigma /(\log \log \sigma)^{3}$. Hence a query $\operatorname{rank}_{a}(i, C)$ is answered in $O(\log \sigma / \log \log \sigma)$ time.

Linear Construction Time. The data structure described above can be constructed in $O(n)$ time. We can split S into blocks in linear time. Then we stably sort each block and compute the number of times n_{a} the symbol $a \in \Sigma$ occurs in a block. We can implement stable sorting by replacing each $C[i]$ with $C^{\prime}[i]=C[i] \cdot \sigma+i$ and applying radix sort to the resulting sequence. Using sorted array C^{\prime}, we can: (i) compute $\pi(i)$ for each position i within a block; (ii) find values of n_{a} for each symbol a and construct the sequence V; (iii) generate sets F_{a}^{\prime} and the array R. All these auxiliary structures can be created in linear time. We can construct a y-trie for F_{a} in $O\left(\left|F_{a}\right|(\log \log \sigma)^{3}\right)$ time: each element of a y-trie is kept in $O(\log \log \sigma)$ dictionary data structures; using the deterministic method described in [38, we can construct a dictionary with $m \leq \sigma$ elements in $O\left(m(\log \log \sigma)^{2}\right)$ time. Hence the total time needed to construct a y-trie is $O\left(\left|F_{a}\right|(\log \log \sigma)^{3}\right)$. Since all F_{a} contain $O(\sigma / t)$ elements, y-tries for all F_{a} are created in $O\left(\sigma(\log \log \sigma)^{3} / t+\sigma\right)$ time. Since we can compute $\pi(i)$ for each i in $O(1)$ time using C^{\prime}, we can produce a data structure for computing π^{-1} in linear time. Thus the data structure for answering rank and select queries in a block can be created in $O(\sigma)$ time. When values of n_{a} are known for all blocks we can construct global bit sequences B_{a} for each $a \in \Sigma$.

Data Structure for $\log ^{1 / 2} n<\sigma \leq 2^{\log ^{1 / 3} n}$. In this case the data structure can be constructed in less than linear time. We assume that the symbols of S are initially packed into words of $\log n$ bits so that each word contains $\Theta\left(\log _{\sigma} n\right)$ symbols. We split the sequence S into blocks of size $s=\sigma \log n$. We keep exactly the same data structures for each block as in the case of $\sigma>2^{\log ^{1 / 3} n}$ and bit sequences B_{a} defined in the same way as above. We start by splitting S into blocks and producing an array C^{\prime} for each block C so that $C^{\prime}[i]=C[i] \cdot s+i$. This step takes $O\left(s / \log ^{2 / 3} n\right)$ time. C^{\prime} can be sorted in $O\left(n / \log ^{1 / 3} n\right)$ time, using the ideas of sorting algorithms for small integers described in [2] and [1]. Then we can traverse sorted array C^{\prime} and generate sets that must be stored in data structures F_{a} in $O\left(\left(s / \log ^{2 / 3} n\right)+\sigma\right)$ time. All F_{a} contain $O(s / t)$ elements and can be constructed in $O\left((s / t)(\log \log n)^{3}+\sigma\right)=O\left((s / t)(\log \log n)^{3}\right)$ time. We traverse C^{\prime} again and obtain $R^{\prime}[i]=R\left[C^{\prime}[i]\right]$ for each i. Given R^{\prime}, we can construct R by "reverse sorting". Let $R_{1}[i]=C^{\prime}[i] *(\log \sigma)+R^{\prime}[i]$. That is, the first $\log \sigma$ most significant bits of $R_{1}[i]$ contain a symbol $C[j]$ of the sequence C, the next $\log s$ bits contain its position j in C, the next $\log \log \sigma$ bits contain the value of $R[j]$. We sort R_{1} according to the value of bits at positions $\log \sigma+1, \ldots, \log \sigma+\log s$ (bits that correspond to the positions j of symbols in the original sequence) and then discard the first $\log \sigma+\log s$ bits. The resulting array is the array R.

We can also use C^{\prime} to construct the bit sequence V : we traverse C^{\prime} and compute n_{a} for all a, $1 \leq a \leq \sigma$. When all n_{a} are known, we can produce V in $O\left(s / \log ^{1 / 3} n\right)$ time; a data structure supporting rank and select on V can be also produced in $O\left(s / \log ^{1 / 3} n\right)$ time.

Finally we need to create the data structure for computing π^{-1}. Recall that we have to find all cycles of length at least t and select every t-th element in a cycle. Let $d=\log ^{f} n$ for $f=1 / 6$. During the first stage we create s / d tuples so that each tuple is of the form $\left(j, \pi(j), \pi^{2}(j), \ldots, \pi^{r}(j)\right)$ for some $r \leq d$ and each integer $i, 1 \leq i \leq s$ occurs in at most one tuple. First we obtain values $\pi(i)$ for all $i \in[1, s]$ and keep tuples $(i, \pi(i))$ in the array P_{1}. Using C^{\prime}, we can obtain P_{1} in $O\left(s / \log ^{1 / 3} n\right)$ time. We traverse P_{1} and remove all tuples $(i, \pi(i))$ such that $\pi(i)=i$. Then we obtain the sequence P_{2} that contains tuples $\left(i, \pi(i), \pi^{2}(i)\right)$ for all i such that $(i, \pi(i))$ is still in P_{1}. We create a new instance P_{1}^{\prime} of P_{1} and sort all tuples by their second components. Elements of P_{1}^{\prime} are tuples $(i, \pi(i))$ sorted by $\pi(i)$. Elements of P_{1} are tuples $(i, \pi(i))$ sorted by i. Both P_{1} and P_{1}^{\prime} are traversed simultaneously. If the j-th tuple in P_{1} is $\left(i_{j}, \pi\left(i_{j}\right)\right)$ and $\pi\left(i_{j}\right)=v$, then the j-th tuple in
P_{1}^{\prime} is $(v, \pi(v))$. When we read the $P_{1}[j]$ and $P_{1}^{\prime}[j]$, we create the new tuple $\left(i_{j}, \pi\left(i_{j}\right), \pi(v)=\pi^{2}\left(i_{j}\right)\right)$ and keep it in a sequence P_{2}. When P_{2} is constructed, we discard P_{1}^{\prime}; then we traverse P_{2} and remove all $\left(i_{k}, \pi\left(i_{k}\right), \pi^{2}\left(i_{k}\right)\right)$ such that $\pi^{2}\left(i_{k}\right)=\pi\left(i_{k}\right)$. This procedure is iterated $d-1$ times. During the k-th iteration, we sort tuples in P_{k-1} by their last components and obtain P_{k-1}^{\prime}. Then we merge P_{k-1}^{\prime} with P_{1} and obtain P_{k}. We traverse P_{k} and remove tuples $\left(i_{j}, \ldots, \pi^{k}\left(i_{j}\right)\right)$ satisfying $\pi^{k}\left(i_{j}\right)=i_{j}$. Each iteration takes $O\left(s / \log ^{1 / 3} n\right)$ time. Hence P_{d} is obtained in $O\left(s / \log ^{1 / 6} n\right)$ time.

At the end of the first stage we obtain the sequence P_{d}. Every value i that is not in a cycle of length $v \leq d$ is stored in exactly one tuple of P_{d}. Hence P_{d} consists of s / d tuples. We can easily process all tuples in $O\left(\left|P_{d}\right|\right)$ time and find all values $i, 1 \leq i \leq s$, that must be marked. We can find $\pi^{-t}(i)$ for all marked positions i in $O(s / d)$ time. Thus the structure for computing π^{-1} is constructed in $O\left(s / \log ^{1 / 6} n\right)$ time. The total time needed to produce the static data structure for a sequence S is thus $O\left(|S| / \log ^{1 / 6} n\right)$.

Data Structure for $\sigma<\log ^{1 / 2} n$ In the case when σ is very small, we use a different data structure. We implement rank and select operations on S using the result of Theorem 13 in [6]. Their data structure splits S into chunks of size $\log _{\sigma} n / 2$. Each chunk is kept as in [37. We can traverse S and obtain compressed representation of each chunk in $O\left(n / \log _{\sigma} n\right)$ time. We maintain certain bit sequences for chunks that are described in [6] and can be constructed in $O\left(n \sigma / \log _{\sigma} n\right)$ time. Since $\sigma<\log ^{1 / 2} n, O\left(n \sigma / \log _{\sigma} n\right)=O\left(n \log \log n / \log ^{1 / 2} n\right)$. This representation of S also supports fast substring extraction: since S is kept in chunks, we can decode all symbols from a chunk in $O(1)$ time and retrieve a string of length l in $O\left(l / \log _{\sigma} n\right)$ time.

Theorem 4 There exists a data structure D that that stores a sequence $S[1, n]$ in $n H_{k}+$ $O\left(n(\log \log \sigma)^{3}\right)$ bits, where σ is the alphabet size, and supports queries access, rank, and select in $O(\log n / \log \log n)$ time. D can be constructed in $O(n)$ time.
Suppose that $\sigma \leq 2^{\log ^{1 / 3} n}$ and S is initially stored in $O\left(n / \log _{\sigma} n\right)$ words, so that every word contains $\Theta\left(\log _{\sigma} n\right)$ consecutive symbols; then D can be constructed in $O\left(n / \log ^{1 / 6} n\right)$ time.

Finally we remark about re-building static sequences that is needed by background processes described in Section A.4. When a subsequence S_{i} is re-built, we retrieve S_{i} using the algorithm for substring extraction in $O\left(\left|S_{i}\right| / \log _{\sigma} n\right)$ time. The decoded sequence S_{i} is then kept in uncompressed form; we keep S_{i} in a sequence of words, so that each word contains $\log _{\sigma} n$ symbols. We can apply the construction algorithms described in this section to uncompressed sequence S_{i}. The workspace needed to store S_{i} in plain form is $O\left(\left|S_{i}\right| \log \sigma\right)$ bits.

A. 8 Operation select' on \tilde{S} and Reporting a Substring of a Binary Sequence

Operation select ${ }_{a}^{\prime}(i, \tilde{S})$. Let S_{a} be the subsequence of S that consists of all occurrences of a symbol a. We maintain a bit sequence \tilde{W} for each sequence S_{a}. For every element of S_{a}, we keep one or two consecutive bits in \tilde{W}. If the j-th occurrence of a is not stored in \tilde{S}, then we represent it by a 0 ; if the j-th occurrence is stored in \tilde{S} (i.e., it is stored in either S_{a}^{\prime} or S_{0}), then we represent it by a two-bit sequence 10. Let f denote the number of symbols in S_{a}^{\prime} among the first j symbols of S_{a}. Then $S_{a}[j]$ is represented by the $(j+f)$-th bit in \tilde{W} or by the $(j+f)$-th and $(j+f+1)$-st bits in \tilde{W} : if $S_{a}[j]$ is stored in S_{a}^{\prime}, then $\tilde{W}[f+j]=1$ and $\tilde{W}[f+j+1]=0$; otherwise $\tilde{W}[f+j]=0$ and
$\tilde{W}[f+j+1]$ represents the next symbol in S_{a}. We can answer rank and select queries on \tilde{W} and support updates on \tilde{W} in $O(\log n / \log \log n)$ time. Let $v_{1}=\operatorname{select}_{0}(i, \tilde{W})$ and $v_{2}=\operatorname{rank}_{1}\left(v_{1}, \tilde{W}\right)$. Then $\operatorname{select}_{a}^{\prime}(i, \tilde{S})=v_{2}$.

Reporting a Substring in a Binary Sequence. Let M be a binary sequence. We prove the following Lemma:

Lemma 11 Let M be a binary sequence of length n with $O(n / r) 0$-bits. We can store M in $O((n / r) \log r)$ bits, so that any substring $M[i . . i+\ell-1]$ can be obtained in $O(\log n / \log \log n+\ell / \log n)$ time. Insertions and deletions are supported in $O(\log n / \log \log n)$ time.

Proof: We store M using a variant of run-length encoding: each substring that consists of d 1-bits followed by a 0 -bit, where $0 \leq d \leq 2 \log ^{2} n$, is encoded as an integer d. For instance, a sequence 100011110 will be encoded as $1,0,0,0,4$. We divide the run-length encoded sequence into blocks, such that each block consists of at least $\log n / 8 \log \log n$ and at most $\log n / 4$ run-lengths and the length of each block is at most $\log n / 2$ bits. Run-lengths are delta-encoded so that a run of length d uses $\log d+o(\log d)$ bits. Thus each block contains $\Omega(\log n)$ bits.

We also maintain an additional data structure A that finds for each position j in M, the run-length d that encodes $M[j]$ and the block that contains the run-length d. A encodes every runlength in unary. Thus a run of length d is represented by $1^{d} 0$. Since M contains $O(n / r) 0$-bits, M consists of $O(n / r)$ runs of 1's followed by a 0 . Hence A consists of $O(n / r) 0$'s and $O(n) 1$-bits. The sequence A^{\prime} encodes in unary the number of runs in every block of M. Using standard methods, we can keep A and A^{\prime} in $O((n / r) \log r)$ bits and support queries and updates in $O(\log n / \log \log n)$ time. Using rank and select queries on A and A^{\prime}, we can find the block that encodes $M[j]$ and the position of $M[j]$ in its block for any $j, 1 \leq j \leq n$, in $O(\log n / \log \log n)$ time. We also keep a look-up table $T b l$ that enables us to retrieve all k elements stored in a block in $O(k / \log n)$ time; for every block, $T b l$ contains the sequence of bits encoded by this block. Since there are $O\left(n^{1 / 2}\right)$ different blocks and each block encodes a poly-logarithmic number of elements, $T b l$ uses $o(n)$ bits.

Each block contains either at least $\log ^{2} n / 4 \log \log n 1$-bits or at least $\log n / 4 \log \log n 0$-bits. Hence the total number of blocks is $O\left(n\left(\log \log n / \log ^{2} n\right)+(n / r)(\log \log n / \log n)\right)$. Each block needs $O(\log n)$ bits. Hence all blocks use $O((n / r) \log \log n)$ bits.

To extract a substring $M[i . . i+\ell-1]$, we start by finding the block $B l$ that contains $M[i]$ and the position of $M[i]$ in $B l$. Then we simply decode the remaining part of the block $B l$ and the following blocks until $O(\ell)$ symbols are decoded.

A. 9 Substring Extraction

Now we show how the fully-dynamic data structure described in Section 5 supports the operation of retrieving a substring of length ℓ. Suppose that we want to extract the substring $S[i . . i+\ell]$. We keep a copy S_{w} of subsequence S_{0} implemented as follows. S_{w} is split into words, such that each word contains between $\log _{\sigma} n / 4$ and $\log _{\sigma} n / 2$ symbols of S_{0}. Let w_{i} be the number of symbols in the i-th word; we maintain a prefix-sum data structure on w_{i}. Using this data structure, we can find the word $S_{w}[j]$ that contains the i-th symbol of S_{0} in $O(\log n / \log \log n)$ time. We can find the position o_{i} of $S_{0}[i]$ in that word in $O(1)$ time. Using table look-up, we can extract the remaining symbols of $S_{w}[j]$ in $O(1)$ time. If $w_{j}-o_{i}<\ell$, we extract the following symbols from words $S_{w}[j+1]$, $S_{w}[j+2], \ldots$ until ℓ symbols are reported.

The static data structure on S_{i} can be used to extract ℓ symbols in $O\left(\log n / \log \log n+\ell / \log _{\sigma} n\right)$ time. Some of these symbols can, however, be marked as deleted. We use the following additional structures in order to extract $\Theta\left(\log _{\sigma} n\right)$ undeleted symbols in $O(1)$ time. Recall that each sequence S_{i} is stored as a sequence of meta-symbols S_{i}^{M} and every meta-symbol represents $\left\lceil\frac{\log _{\sigma} n}{2}\right\rceil$ symbols. We say that a meta-symbol $S_{i}^{M}[j]$ is spoiled if at least $\log _{\sigma} n / 4$ symbols represented by $S_{i}^{M}[j]$ are marked as deleted. A symbol is spoiled if it is stored in a spoiled meta-symbol. Positions of spoiled symbols are indicated by a binary sequence $S P O S_{i}$. That is, $S P O S_{i}[j]=1$ iff the symbol $S_{i}[j]$ is not spoiled. Symbols stored in spoiled meta-symbols are also kept in a sequence V_{i}. Representation of V_{i} is similar to representation of S_{w}, but it contains only undeleted symbols stored in spoiled meta-symbols. V_{i} is divided into words and each word $V_{i}^{M}[j]$ contains up to $\log _{\sigma} n / 2$ symbols. If a word $V_{i}^{M}[j]$ contains less than $\log _{\sigma} n / 4$ symbols, than the last symbol in this word is followed by a non-spoiled symbol. Each word is augmented with a field next. Let $f o l(j)$ denote the symbol that follows the last symbol in $V_{i}^{M}[j] . V_{i}^{M}[j] . n e x t=N U L L$ if $f o l(j)$ is spoiled; otherwise $V_{i}^{M}[j]$.next points to the position of $f o l(j)$ in S_{i}^{M}. A sequence $V P O S_{i}$ indicates boundaries of words in V_{i} : $V P O S_{i}$ contains a 0 -bit for every symbol in V_{i} that is not the last symbol in its word $V_{i}^{M} ; V P O S_{i}$ contains a two-bit substring 01 for every symbol that is the last symbol in its word. Thus each symbol is encoded by a 0 -bit and the end of every word in V is encoded by a 1 -bit. If a symbol $S_{i}[j]$ is not marked as deleted and kept in a spoiled meta-symbol, then we can find the position of $S_{i}[j]$ in V_{i} by answering one rank query on $S P O S_{i}$ and one rank and one select query on $V P O S_{i}$.

The total number of symbols that are marked as deleted in all S_{i} is bounded by $O(n / r)$. Hence the number of spoiled symbols in all S_{i} is also $O(n / r)$. Non-deleted symbols kept in a spoiled metasymbol are stored in at most three words of V_{i}^{M}. Hence the total number of words in all V_{i}^{M} is bounded by $O\left(n /\left(r \log _{\sigma} n\right)\right)$. Since every word uses $O(\log n)$ bits of space, all V_{i} need $O((n / r) \log \sigma)$ bits. All bit sequences $V P O S_{i}$ and $S P O S_{i}$ use $O(n / r)$ and $O((n / r) \log r)$ bits respectively. Hence we need $O((n / r) \log \sigma)$ additional bits in order to support substring extraction.

Suppose that a string $S_{t}[i . . i+l]$ must be extracted. We find the meta-symbol $S_{t}^{M}\left[j_{0}\right]$ that contains $S_{t}[i]$ and decode meta-symbols $S_{t}^{M}\left[j_{0}\right], S_{t}^{M}\left[j_{0}+1\right], \ldots$ and output the appropriate symbols until l symbols are reported or a spoiled meta-symbol is encountered. If the symbol $S_{t}^{M}[j]$ is spoiled, we find the position of $S_{t}^{M}[j]$ in V_{t} and output symbols from V_{t}. If we enumerated symbols of $V_{t}^{M}\left[j_{1}\right]$ and $V_{t}^{M}\left[j_{1}\right]$.next $\neq N u l l$, then we switch back to $S_{t}^{M}\left[j_{2}\right]$, where $S_{t}^{M}\left[j_{2}\right]$ is the meta-symbol that is pointed to by $V_{t}^{M}\left[j_{1}\right]$.next, and decode symbols from $S_{t}^{M}\left[j_{2}\right], S_{t}^{M}\left[j_{2}+1\right], \ldots$ until a spoiled symbol is encountered. We output symbols from $V_{t}^{M}\left[j_{1}+1\right], \ldots, V_{t}^{M}\left[j_{2}\right]$ until $V_{t}^{M}\left[j_{2}\right] . n e x t \neq N U L L$. We proceed in the same way until l symbols are decoded. Each meta-symbol of S_{t} and each word of V_{t} is processed in $O(1)$ time. It is easy to check that the total number of words and meta-symbols is bounded by $O\left(l / \log _{\sigma} n\right)$. Every retrieved non-spoiled symbol in S_{t}^{M}, except for the first one and the last one, contains $\Theta\left(\log _{\sigma} n\right)$ symbols. Every processed word in V_{t}^{M}, except for the last one, either contains $\Theta\left(\log _{\sigma} n\right)$ symbols or is followed by a non-spoiled meta-symbol. The position of the first accessed spoiled symbol in V_{t} is computed in $O(\log n / \log \log n)$ time. The position of the first accessed meta-symbol in S_{t}^{M} is also computed in $O(\log n / \log \log n)$ time. Thus the total query time is $O\left(\log n / \log \log n+l / \log _{\sigma} n\right)$.

The extraction of l symbols $S[i . . i+l]$ from the global sequence S is implemented as follows. We find $i_{0}=\operatorname{rank}_{0}(i, R)$ and $i_{1}=\operatorname{rank}_{1}(i, R)$. We compute t such that $\sum_{j=1}^{t-1} \operatorname{Size}[j]<i_{1} \leq$ $\sum_{j=1}^{j} \operatorname{Size}[j]$ and extract substring $S_{t}[f . . f+l]$ for $f=i_{1}-\sum_{j=1}^{t-1} S i z e[j]$. If the end of S_{t} is reached, we extract remaining symbols from S_{t+1}, S_{t+2}, \ldots We also extract $S_{0}\left[i_{0} . . i_{0}+l\right]$. Let $S t r_{1}$ be the substring extracted from the static subsequence (or subsequences) and let $S t r_{0}$ be the string
extracted from S_{0}. We can merge the prefix of $S t r_{1}$ with the prefix of $S t r_{0}$ using R. At each step we consider the next $\log _{\sigma} n / 6$ symbols of $S t r_{0}$ and $\log _{\sigma} n / 6$ symbols of $S t r_{1}$ that are not processed yet. Suppose that these symbols are stored in words W_{0} and W_{1} respectively. We read the next $\log _{\sigma} n / 6$ bits of R and keep them in a bit sequence R_{W}. Using a look-up table, we can obtain the sequence $W_{\text {res }}$ that consists of $\log _{\sigma} n / 6$ following symbols in $O(1)$ time: if $R_{W}[j]=1$, then the j-th symbol of $W_{\text {res }}$ is the r_{0}-th symbol of W_{0} where r_{0} is the number of 0 's among the first j bits of R_{W}; otherwise the j-th symbol of $W_{\text {res }}$ is the r_{1}-th symbol of W_{1} where r_{1} is the number of 1 's among the first j bits of R_{W}. The sequence $W_{\text {res }}$ contains the next $\log _{\sigma} n / 6$ symbols of $S[i . . i+l]$. Proceeding in the same way, we can obtain the substring $S[i . . i+l]$ in $O\left(6 l / \log _{\sigma} n\right)=O\left(l / \log _{\sigma} n\right)$ time.

[^0]: *Cheriton School of Computer Science, University of Waterloo. Email imunro@uwaterloo.ca.
 ${ }^{\dagger}$ Cheriton School of Computer Science, University of Waterloo. Email: yakov.nekrich@googlemail.com.
 ${ }^{1}$ Henceforth $H_{0}(S)=\sum_{a \in \Sigma} \frac{n_{a}}{n} \log \frac{n}{n_{a}}$, where n_{a} is the number of times a occurs in S, is the 0 -th order entropy and $H_{k}(S)$ for $k \geq 0$ is the k-th order empirical entropy. $H_{k}(S)$ can be defined as $H_{k}(S)=\sum_{A \in \Sigma^{k}}\left|S_{A}\right| H_{0}\left(S_{A}\right)$, where S_{A} is the subsequence of S generated by symbols that follow the k-tuple $A ; H_{k}(S)$ is the lower bound on the average space usage of any statistical compression method that encodes each symbol using the context of k previous symbols [29].

[^1]: ${ }^{2}$ To simplify the description, we assume that a list entry precedes itself.

[^2]: ${ }^{3}$ Static data structures also achieve significantly faster query times, but this is not necessary for our implementation.

[^3]: ${ }^{4}$ An alphabet for S_{j} is effective if it contains only symbols that actually occurred in S_{j}.

