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Compressed Data Structures for Dynamic Sequences

J. Ian Munro∗ Yakov Nekrich†

Abstract

We consider the problem of storing a dynamic string S over an alphabet Σ = { 1, . . . , σ } in
compressed form. Our representation supports insertions and deletions of symbols and answers
three fundamental queries: access(i, S) returns the i-th symbol in S, ranka(i, S) counts how
many times a symbol a occurs among the first i positions in S, and selecta(i, S) finds the position
where a symbol a occurs for the i-th time. We present the first fully-dynamic data structure
for arbitrarily large alphabets that achieves optimal query times for all three operations and
supports updates with worst-case time guarantees. Ours is also the first fully-dynamic data
structure that needs only nHk + o(n log σ) bits, where Hk is the k-th order entropy and n is
the string length. Moreover our representation supports extraction of a substring S[i..i + ℓ] in
optimal O(log n/ log logn+ ℓ/ logσ n) time.

1 Introduction

In this paper we consider the problem of storing a sequence S of length n over an alphabet
Σ = { 1, . . . , σ } so that the following operations are supported:
- access(i, S) returns the i-th symbol, S[i], in S
- ranka(i, S) counts how many times a occurs among the first i symbols in S, ranka(i, S) =
|{ j |S[j] = a and 1 ≤ j ≤ i }|
-selecta(i, S) finds the position in S where a occurs for the i-th time, selecta(i, S) = j where j is
such that S[j] = a and ranka(j, S) = i.
This problem, also known as the rank-select problem, is one of the most fundamental problems in
compressed data structures. There are many data structures that store a string in compressed form
and support three above defined operations efficiently. There are static data structures that use
nH0 + o(n log σ) bits or even nHk + o(n log σ) bits for any k ≤ α logσ n− 1 and a positive constant
α < 11. Efficient static rank-select data structures are described in [16, 15, 12, 25, 26, 4, 20, 35, 6].
We refer to [6] for most recent results and a discussion of previous static solutions.

In many situations we must work with dynamic sequences. We must be able to insert a new
symbol at an arbitrary position i in the sequence or delete an arbitrary symbol S[i]. The design
of dynamic solutions, that support insertions and deletions of symbols, is an important problem.

∗Cheriton School of Computer Science, University of Waterloo. Email imunro@uwaterloo.ca.
†Cheriton School of Computer Science, University of Waterloo. Email: yakov.nekrich@googlemail.com.
1Henceforth H0(S) =

∑
a∈Σ

na

n
log n

na
, where na is the number of times a occurs in S, is the 0-th order entropy

and Hk(S) for k ≥ 0 is the k-th order empirical entropy. Hk(S) can be defined as Hk(S) =
∑

A∈Σk |SA|H0(SA),
where SA is the subsequence of S generated by symbols that follow the k-tuple A; Hk(S) is the lower bound on the
average space usage of any statistical compression method that encodes each symbol using the context of k previous
symbols [29].

1

http://arxiv.org/abs/1507.06866v1


Ref. Space Rank Select Access Insert/
Delete

[20] nH0(S) + o(n log σ) O((1 + log σ/ log log n)λ) O((1 + log σ/ log log n)λ) W

[35] nH0(S) + o(n log σ) O((log σ/ log log n)λ) O((log σ/ log log n)λ) W

[33] nH0(S) + o(n log σ) O(λ) O(λ) O(λ) O(λ) A

[33] nH0(S) + o(n log σ) O(log n) O(λ) O(λ) O(log n) W

[23] nHk + o(n log σ) - - O(λ) O(λ) W

[17] nHk + o(n log σ) - - O(λ) O(λ) W

New nHk + o(n log σ) O(λ) O(λ) O(λ) O(λ) W

Table 1: Previous and New Results for Fully-Dynamic Sequences. The rightmost column indicates
whether updates are amortized (A) or worst-case (W). We use notation λ = log n/ log log n in this
table.

Fully-dynamic data structures for rank-select problem were considered in [21, 10, 8, 27, 9, 19, 28, 22].
Recently Navarro and Nekrich [33, 34] obtained a fully-dynamic solution with O(log n/ log log n)
times for rank, access, and select operations. By the lower bound of Fredman and Saks [14], these
query times are optimal. The data structure described in [33] uses nH0(S) + o(n log σ) bits and
supports updates in O(log n/ log log n) amortized time. It is also possible to support updates in
O(log n) worst-case time, but then the time for answering a rank query grows to O(log n) [34]. All
previously known fully-dynamic data structures need at least nH0(S) + o(n log σ) bits. Two only
exceptions are data structures of Jansson et al. [23] and Grossi et al. [17] that keep S in nHk(S) +
o(n log σ) bits, but do not support rank and select queries. A more restrictive dynamic scenario was
considered by Grossi et al. [17] and Jansson et al. [23]: an update operation replaces a symbol S[i]
with another symbol so that the total length of S does not change, but insertions of new symbols
or deletions of symbols of S are not supported. Their data structures need nHk(S)+o(n log σ) bits
and answer access queries in O(1) time; the data structure of Grossi et al. [17] also supports rank
and select queries in O(log n/ log log n) time.

In this paper we describe the first fully-dynamic data structure that keeps the input sequence
in nHk(S) + o(n log σ) bits; our representation supports rank, select, and access queries in optimal
O(log n/ log log n) time. Symbol insertions and deletions at any position in S are supported in
O(log n/ log log n) worst-case time. We list our and previous results for fully-dynamic sequences
in Table 1. Our representation of dynamic sequences also supports the operation of extracting
a substring. Previous dynamic data structures require O(ℓ) calls of access operation in order to
extract the substring of length ℓ. Thus the previous best fully-dynamic representation, described
in [33] needs O(ℓ(log n/ log log n)) time to extract a substring S[i..i + ℓ− 1] of S. Data structures
described in [17] and [23] support substring extraction in O(log n/ log log n + ℓ/ logσ n) time but
they either do not support rank and select queries or they support only updates that replace a
symbol with another symbol. Our dynamic data structure can extract a substring in optimal
O(log n/ log log n+ ℓ/ logσ n) time without any restrictions on updates or queries.

In Section 2 we describe a data structure that uses O(log n) bits per symbol and supports rank,
select, and access in optimal O(log n/ log log n) time. This data structure essentially maintains
a linked list L containing all symbols of S; using some auxiliary data structures on L, we can
answer rank, select, and access queries on S. In Section 3 we show how the space usage can
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be reduced to O(log σ) bits per symbol. A compressed data structure that needs H0(S) bits
per symbol is presented in Section 4. The approach of Section 4 is based on dividing S into a
number of subsequences. We store a fully-dynamic data structure for only one such subsequence
of appropriately small size. Updates on other subsequences are supported by periodic re-building.
In Section 5 we show that the space usage can be reduced to nHk(S) + o(n log σ).

2 O(n logn)-Bit Data Structure

We start by describing a data structure that uses O(log n) bits per symbol.

Lemma 1 A dynamic string S[1,m] for m ≤ n over alphabet Σ = { 1, . . . , σ } can be stored in
a data structure that needs O(m logm) bits, and answers queries access, rank and select in time
O(logm/ log log n). Insertions and deletions of symbols are supported in O(logm/ log log n) time.
The data structure uses a universal look-up table of size o(nε) for an arbitrarily small ε > 0.

Proof : We keep elements of S in a list L. Each entry of L contains a symbol a ∈ Σ. For every
a ∈ Σ, we also maintain the list La. Entries of La correspond to those entries of L that contain
the symbol a. We maintain data structures D(L) and D(La) that enable us to find the number of
entries in L (or in some list La) that precede an entry e ∈ L (resp. e ∈ La); we can also find the
i-th entry e in La or L using D(L·). We will prove in Lemma 6 that D(L) needs O(m logm) bits
and supports queries and updates on L in O(logm/ log log n) time.

We can answer a query selecta(i, S) by finding the i-th entry ei in La, following the pointer
from ei to the corresponding entry e′ ∈ L, and counting the number v of entries preceding e′ in
L. Clearly2, selecta(i, S) = v. To answer a query ranka(i, S), we first find the i-th entry e in L.
Then we find the last entry ea that precedes e and contains a. Such queries can be answered in
O((log log σ)2 log logm) time as will be shown in Lemma 5 in Section A.1. If e′a is the entry that
corresponds to ea in La, then ranka(i, S) = v, where v is the number of entries that precede e′a in
La. �

3 O(n log σ)-Bit Data Structure

Lemma 2 A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be stored in a data structure
using O(n log σ) bits, and supporting queries access, rank and select in time O(log n/ log log n).
Insertions and deletions of symbols are supported in O(log n/ log log n) time.

Proof : If σ = logO(1) n, then the data structures described in [35] and [20] provide desired query
and update times. The case σ = logΩ(1) n is considered below.

We show how the problem on a sequence of size n can be reduced to the same problem on a
sequence of size O(σ log n). The sequence S is divided into chunks. We can maintain the size ni of
each chunk Ci, so that ni = O(σ log n) and the total number of chunks is bounded by O(n/σ). We
will show how to maintain chunks in Section A.3. For each a ∈ Σ, we keep a global bit sequence
Ba. Ba = 1d101d20 . . . 1di0 . . . where di is the number of times a occurs in the chunk Ci. We
also keep a bit sequence Bt = 1n101n20 . . . 1ni0 . . .. We can compute ranka(i, S) = v1 + v2 where
v1 = rank1(select0(j1, Ba), Ba), j1 = rank0(select1(i, Bt), Bt), v2 = ranka(i1, Ci2), i2 = j1 + 1 and

2To simplify the description, we assume that a list entry precedes itself.
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i1 = i − rank1(select0(j1, Bt), Bt). To answer a query selecta(i, S), we first find the index i2 of
the chunk Ci2 that contains the i-th occurrence of i, i2 = rank0(select1(i, Ba), Ba) + 1. Then we
find va = selecta(Ci2 , i − i1) for i1 = rank1(select0(i2 − 1, Ba), Ba); va identifies the position of
the (i − i1)-th occurrence of a in the chunk Ci2 , where i1 denotes the number of a’s in the first
i2 − 1 chunks. Finally we compute selecta(i, S) = va + sp where sp = rank1(select0(i2 − 1, Bt), Bt)
is the total number of symbols in the first i2 − 1 chunks. We can support queries and updates on
Bt and on each Ba in O(log n/ log log n) time [35]. By Lemma 1, queries and updates on Ci are
supported in O(log σ/ log log n) time. Hence, the query and update times of our data structure are
O(log n/ log log n).

Bt can be kept in O((n/σ) log σ) bits [35]. The array Ba uses O(na log
n
na

) bits, where na is the
number of times a occurs in S. Hence, all Ba and Bt use O((n/σ) log σ+

∑
a na log

n
na
) = O(n log σ)

bits. By Lemma 1, we can also keep the data structure for each chunk in O(log σ + log log n) =
O(log σ) bits per symbol. �

4 Compressed Data Structure

In this Section we describe a data structure that uses H0(S) bits per symbol. We start by con-
sidering the case when the alphabet size is not too large, σ ≤ n/ log3 n. The sequence S is split
into subsequences S0, S1, . . . Sr for r = O(log n/(log log n)). The subsequence S0 is stored in
O(log σ) bits per element as described in Lemma 2. Subsequences S1, . . . Sr are substrings of S \S0.
S1, . . . Sr are stored in compressed static data structures. New elements are always inserted into
the subsequence S0. Deletions from Si, i ≥ 1, are implemented as lazy deletions: an element in
Si is marked as deleted. We guarantee that the number of elements that are marked as deleted is
bounded by O(n/r). If a subsequence Si contains many elements marked as deleted, it is re-built:
we create a new instance of Si that does not contain deleted symbols. If a symbol sequence S0

contains too many elements, we insert the elements of S0 into Si and re-build Si for i ≥ 1. Processes
of constructing a new subsequence and re-building a subsequence with too many obsolete elements
are run in the background.

The bit sequence M identifies elements in S that are marked as deleted: M [j] = 0 if and only
if S[j] is marked as deleted. The bit sequence R distinguishes between the elements of S0 and
elements of Si, i ≥ 1: R[j] = 0 if the j-th element of S is kept in S0 and R[j] = 1 otherwise.

We further need auxiliary data structures for answering select queries. We start by defining
an auxiliary subsequence S̃ that contains copies of elements already stored in other subsequences.
Consider a subsequence S obtained by merging subsequences S1, . . ., Sr (in other words, S is
obtained from S by removing elements of S0). Let S′

a be the subsequence obtained by selecting
(roughly) every r-th occurrence of a symbol a in S. The subsequence S′ is obtained by merging
subsequences S′

a for all a ∈ Σ. Finally S̃ is obtained by merging S′ and S0. We support queries
select′a(i, S̃) on S̃, defined as follows: select′a(i, S̃) = j such that (i) a copy of S[j] is stored in S̃ and
(ii) if selecta(i, S) = j1, then j ≤ j1 and copies of elements S[j+1], S[j+2], . . ., S[j1] are not stored
in S̃. That is, select′a(i, S̃) returns the largest index j, such that S[j] precedes S[selecta(i, S)] and
S[j] is also stored in S̃. The data structure for S̃ delivers approximate answers for select queries;
we will show later how the answer to a query selecta(i, S) can be found quickly if the answer to
select′a(i, S̃) is known. Queries select′(i, S̃) can be implemented using standard operations on a bit
sequence of size O((n/r) log log n) bits; for completeness, we provide a description in Section A.8.
We remark that S and S′ are introduced to define S̃; these two subsequences are not stored in our

4



Name Purpose Alph. Dynamic/
Size Static

S0 Subsequence of S - Dynamic
Si, 1 ≤ i ≤ r Subsequence of S - Static
M Positions of symbols in Si, i ≥ 1, that are marked as deleted const Dynamic
R Positions of symbols from S0 in S const Dynamic

S̃ Delivers an approximate answer to select queries - Dynamic

S′
a, a ∈ Σ Auxiliary sequences for S̃ - Dynamic

Ẽ Positions of symbols from S̃ in S const Dynamic

B̃ Positions of symbols from S0 in S̃ const Dynamic
Da Positions of symbols marked as deleted among all a’s const Dynamic

Table 2: Auxiliary subsequences for answering rank and select queries. A subsequence is dynamic
if both insertions and deletions are supported. If a subsequence is static, then updates are not
supported. Static subsequences are re-built when they contain too many obsolete elements.

data structure. The bit sequence Ẽ indicates what symbols of S are also stored in S̃: Ẽ[i] = 1 if
a copy of S[i] is stored in S̃ and Ẽ[i] = 0 otherwise. The bit sequence B̃ indicates what symbols
in S̃ are actually from S0: B̃[i] = 0 iff S̃[i] is stored in the subsequence S0. Besides, we keep bit
sequences Da for each a ∈ Σ. Bits of Da correspond to occurrences of a in S. If the l-th occurrence
of a in S is marked as deleted, then Da[l] = 0. All other bits in Da are set to 1.

We provide the list of subsequences in Table 2. Each subsequence is augmented with a data
structure that supports rank and select queries. For simplicity we will not distinguish between a
subsequence and a data structure on its elements. If a subsequence supports updates, then either
(i) this is a subsequence over a small alphabet or (ii) this subsequence contains a small number of
elements. In case (i), the subsequence is over an alphabet of constant size; by [35, 20] queries on such
subsequences are answered in O(log n/ log log n) time. In case (ii) the subsequence contains O(n/r)
elements; data structures on such subsequences are implemented as in Lemma 2. All auxiliary
subsequences, except for S̃, are of type (i). Subsequence S0 and an auxiliary subsequence S̃ are of
type (ii). Subsequences Si for i ≥ 1 are static, i.e. they are stored in data structures that do not
support updates. We re-build these subsequences when they contain too many obsolete elements.
Thus dynamic subsequences support rank, select, access, and updates in O(log n/ log log n) time.
It is known that we can implement all basic operations on a static sequence in O(log n/ log log n)
time3. Our data structures on static subsequences are based on the approach of Barbay et al. [5];
however, our data structure can be constructed faster when the alphabet size is small and supports
a substring extraction operation. A full description will be given in Section A.7. We will show
below that queries on S are answered by O(1) queries on dynamic subsequences and O(1) queries
on static subsequences.

We also maintain arrays Size[] and Counta[] for every a ∈ Σ. For any 1 ≤ i ≤ r, Size[i] is the
number of symbols in Si and Counta[i] specifies how many times a occurs in Si. We keep a data
structure that computes the sum of the first i ≤ r entries in Size[i] and find the largest j such
that

∑j
t=1 Size[t] ≤ q for any integer q. The same kinds of queries are also supported on Counta[].

Arrays Size[] and Counta[] use O(σ · r · log n) = O(n/ log n) bits.

3Static data structures also achieve significantly faster query times, but this is not necessary for our implementa-
tion.
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Queries. To answer a query ranka(i, S), we start by computing i′ = select1(i,M); i′ is the
position of the i-th element that is not marked as deleted. Then we find i0 = rank0(i

′, R) and
i1 = rank1(i

′, R). By definition of R, i0 is the number of elements of S[1..i] that are stored in the
subsequence S0. The number of a’s in S0[1..i0] is computed as c1 = ranka(i0, S0). The number
of a’s in S1, . . . , Sr before the position i′ is found as follows. We identify the index t, such that∑t

j=1 Size[j] < i1 ≤ ∑t+1
j=1 Size[j]. Then we compute how many times a occurred in S1, . . . , St,

c2,1 =
∑t

j=1Counta[j], and in the relevant prefix of St+1, c2,2 = ranka(i1 −
∑t

j=1 Size[j], St+1).
Let c2 = rank1(c2,1+c2,2,Da). Thus c2 is the number of symbols ’a’ that are not marked as deleted
among the first c2,1 + c2,2 occurrences of a in S \ S0. Hence ranka(i, S) = c1 + c2.

To answer a query selecta(i, S), we first obtain an approximate answer by asking a query
select′a(i, S̃). Let i

′ = select1(i,Da) be the rank of the i-th symbol a that is not marked as deleted.
Let l0 = select′a(i

′, S̃). We find l1 = rank1(l0, Ẽ) and l2 = selecta(ranka(l1, S̃) + 1, S̃). Let first =
select1(l1, Ẽ) and last = select1(l2, Ẽ) be the positions of S̃[l1] and S̃[l2] in S. By definition of select′,
ranka(first, S) ≤ i and ranka(last, S) > i. If ranka(first, S) = i, then obviously selecta(i, S) =
first. Otherwise the answer to selecta(i, S) is an integer between first and last. By definition of
S̃, the substring S[first], S[first+ 1], . . ., S[last] contains at most r occurrences of a. All these
occurrences are stored in subsequences Sj for j ≥ 1. We compute i0 = ranka(rank0(first,R), S0)
and i1 = i′ − i0. We find the index t such that

∑t−1
j=1Counta[j] < i1 ≤ ∑t

j=1Counta[j]. Then

v1 = selecta(i1 −
∑t−1

j=1Counta[j], St) is the position of S[selecta(i, S)] in St. We find its index in S

by computing v2 = v1 +
∑t−1

j=1 Size[j] and v3 = select1(v2, R). Finally selecta(i, S) = rank1(v3,M).
Answering an access query is straightforward. We determine whether S[i] is stored in S0 or

in some Sj for j ≥ 1 using R. Let i′ = select1(i,M). If R[i′] = 0 and S[i] is stored in S0,
then S[i] = S0[rank0(i

′, R)]. If R[i′] = 1, we compute i1 = rank1(i
′, R) and find the index j

such that
∑j−1

t=1 Size[t] < i1 ≤ ∑j
t=1 Size[t]. The answer to access(i, S) is S[i] = Sj[i2] for i2 =

i1 −
∑j−1

t=1 Size[t].

Space Usage. The redundancy of our data structure can be estimated as follows. The space
needed to keep the symbols that are marked as deleted in subsequences Sj is bounded byO((n/r)(log σ+
log r)): Let na denote the number of symbols a that are marked as deleted and let n =

∑
a na.

Then all symbols that are marked as deleted use X =
∑

a na log
n+n

na+na
bits. Since n+n

na+na
≤ 2n

na
,

X ≤ ∑
a na +

∑
a na log

n
na
. If n < n/r2, X = o(n). If n > n/r2, then X = O(n/r) + O(n log r) +

∑
a na log

n
na

= O(nr (log σ + log r)). S0 also takes O((n/r) log σ) bits. The bit sequences R and M

need O((n/r) log r) = o(n) bits; B̃, Ẽ also use O((n/r) log r) bits. Each bit sequence Da can be
maintained in O(n′

a log(na/n
′
a)) bits where na is the total number of symbols a in S and n′

a is the
number of symbols a that are marked as deleted. All Da take O(

∑
a∈Σ n′

a log
na
n′
a
). To estimate the

last expression, we divide the alphabet Σ into Σ1 and Σ2; Sigma1 contains all symbols a such that
n′
a ≥ na/ log

2 n and Σ2 contains all symbols a, such that n′
a < na/ log

2 n. Then
∑

a∈Σ n′
a log

na
n′
a
=

∑
a∈Σ1

n′
a log

na
n′
a
+

∑
a∈Σ2

n′
a log

na
n′
a
≤ (2n/r) log log n + (n/ log n) = O((n/r) log log n). Hence all

Da need O((n/r) log log n) = o(n) bits. The subsequence S̃ can be stored in O((n/r) log σ) bits.
Thus all auxiliary subsequences use O((n/r)(log σ+log r)) = O(n logσ log logn

logn ) bits. Data structures

for subsequences Si, r ≥ i ≥ 1, use
∑r

i=1(niHk(Si) + o(ni log σ)) = nHk(S \ S0) + o(n log σ) bits
for any k = o(logσ n), where ni is the number of symbols in Si. Since Hk(S) ≤ H0(S) for k ≥ 0,
all subsequences Si are stored in nH0(S) + o(n log σ) bits.

6



Updates. When a new symbol is inserted, we insert it into the subsequence S0 and update the
sequence R. The data structure for S̃ is also updated accordingly. We also insert a 1-bit at the
appropriate position of bit sequences M and Da where a is the inserted symbol. Deletions from
S0 are symmetric. When an element is deleted from Si, i ≥ 1, we replace the 1-bit corresponding
to this element in M with a 0-bit. We also change the appropriate bit in Da to 0, where a is the
symbol that was deleted from Si.

We must guarantee that the number of elements in S0 is bounded by O(n/r); the number of
elements marked as deleted must be also bounded by O(n/r). Hence we must re-build the data
structure when the number of symbols in S0 or the number of deleted symbols is too big. Since
we aim for updates with worst-case bounds, the cost of re-building is distributed among O(n/r)
updates. We run two processes in the background. The first background process moves elements of
S0 into subsequences Si. The second process purges sequences S1, . . ., Sr and removes all symbols
marked as deleted from these sequences. Details are given in Section A.4.

We assumed in the description of updates that log n is fixed. In the general case we need
additional background processes that increase or decrease sizes of subsequences when n becomes
too large or too small. These processes are organized in a standard way. Thus we obtain the
following result

Lemma 3 A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } for σ < n/ log3 n can be stored in
a data structure that uses nH0+O(n logσ log logn

logn )+O(n(log log σ)3) bits and answers queries access,
rank and select in time O(log n/ log log n). Insertions and deletions of symbols are supported in
O(log n/ log log n) time.

4.1 Compressed Data Structure for σ > n/ log3 n

If the alphabet size σ is almost linear, we cannot afford storing the arrays Counta[]. Instead,
we keep a bit sequence BCounta for each alphabet symbol a. Let sa,i denote the number of a’s
occurrences in the subsequence Si and sa =

∑r
i=1 sa,i. Then BCounta = 1sa,101sa,20 . . . 1sa,r . If

sa < r log2 n,we can keep BCounta in O(sa log
r+sa
sa

) = O(sa log log n) bits. If sa > r log2 n, we can

keep BCounta in O(r log r+sa
sa

) = O((sa/ log
2 n) log n) = O(sa/ log n) bits. Using BCounta, we can

find for any q the subsequence Sj, such that Counta[j] < q ≤ Counta[j + 1] in O(log n/ log log n)
time.

We also keep an effective alphabet4 for each Sj. We keep a bit vector Mapj[] of size σ, such
that Mapj[a] = 1 if and only if a occurs in Sj . Using Mapj[], we can map a symbol a ∈ [1, n] to
a symbol mapj(a) = rank1(a,Mapj) so that mapj(a) ∈ [1, |Sj |] for any a that occurs in Sj. Let
Σj = {mapj(a) | a occurs in Sj }. For every mapj(a) we can find the corresponding symbol a using
a select query on Mapj. We keep a static data structure for each sequence Sj over Σj. Queries and
updates are supported in the same way as in Lemma 3. Combining the result of this sub-section
and Lemma 3, we obtain the data structure for an arbitrary alphabet size.

Theorem 1 A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be stored in a data
structure that uses nH0 + O(n log σ log logn

logn ) + O(n(log log σ)3) bits and answers queries access,
rank and select in time O(log n/ log log n). Insertions and deletions of symbols are supported in
O(log n/ log log n) time.

4An alphabet for Sj is effective if it contains only symbols that actually occurred in Sj .
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5 Compressed Data Structure II

By slightly modifying the data structure of Theorem 1 we can reduce the space usage to essentially
Hk(S) bit per symbol for any k = o(logσ n) simultaneously. First, we observe that any sub-sequence
Si for i ≥ 1 is kept in a data structures that consumesHk(Si)+o(|Si| log σ) bits of space. Thus all Si

use
∑r

i=1(niHk(Si)+o(ni log σ)) = nHk(S\S0)+o(n log σ) bits. It can be shown that nHk(S\S0) =

nHk(S) + O(n(1 + logn
r )) bits; we prove this bound in Section A.6. Since r = O(log n/ log log n),

the data structure of Theorem 1 uses nHk +O(n) +O(n log log n) +O(n(log log σ)3) bits.
In order to get rid of the O(n log log n) additive term, we use a different static data structure;

our static data structure is described in Section A.7. As before, the data structure for a sequence
Si uses |Si|Hk + o(|Si| log σ) bits. But we also show in Section A.7 that our static data structure

can be constructed in O(|Si|/ log1/6 n) time if the alphabet size σ is sufficiently small, σ ≤ 2log
1/3 n.

The space usage nHk(S) + o(n log σ) can be achieved by appropriate change of the parameter r.

If σ > 2log
1/3 n, we use the data structure of Theorem 1. As explained above, the space usage is

nHk+o(n log σ)+O(n log log n) = nHk+o(n log σ). If σ ≤ 2log
1/3 n we also use the data structure of

Theorem 1, but we set r = O(log n log log n) and implement static data structures as in Section A.7.
The data structure needs nHk(S) + O(n/ log log n) + O(n(log log σ)3) = nHk(S) + o(n log σ) bits.
Since we can re-build a static data structure for a sequence Si in O(|Si| log1/6 n) time, background
processes incur an additional cost of O(log n/ log log n). Hence the cost of updates does not increase.

Theorem 2 A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be stored in a data
structure that uses nHk + O(n log σ log logn

logn ) + O(n(log log σ)3) bits and answers queries access,
rank and select in time O(log n/ log log n). Insertions and deletions of symbols are supported in
O(log n/ log log n) time.

6 Substring Extraction

Our representation of compressed sequences also enables us to retrieve a substring S[i..i + ℓ −
1] of S. The static data structure, described in Section A.7 supports substring extraction in
O(log n/ log log n + ℓ/ logσ n) time. Hence we can quickly retrieve a substring of any Si. We can
also augment S0 with an O((n/r) log σ) additional bits, so that a substring of S0 is extracted in
the same time. We can retrieve a substring of S by extracting a substring of S0 and a substring of
some Si for i ≥ 1 and merging the result. A detailed description is provided in Section A.9. Our
result can be summed up as follows.

Theorem 3 We can augment data structures described in Theorem 1 and Theorem 2 with O((n/r) log σ)
additional bits, so that a substring of length ell can be extracted in O((log n/ log log n)+ ell/ logσ n)
time. The parameter r = Ω(log n/ log log n) is defined in the same way as in Theorems 1 and 2.
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[12] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of se-
quences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.

[13] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds.
Theor. Comput. Sci., 372(1):115–121, 2007.

[14] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proc.
21st STOC, pages 345–354, 1989.

[15] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a tool for
text indexing. In Proc. 17th SODA, pages 368–373, 2006.

[16] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
14th SODA, pages 841–850, 2003.

[17] R. Grossi, R. Raman, S. R. Satti, and R. Venturini. Dynamic compressed strings with random
access. In Proc. 40th International Colloquium on Automata, Languages, and Programming
(ICALP 2013), pages 504–515, 2013.

9



[18] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation for linear
lists. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, pages 49–60,
1977.

[19] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. A framework for dynamizing succinct data
structures. In Proc. 34th ICALP, pages 521–532, 2007.

[20] M. He and J. I. Munro. Succinct representations of dynamic strings. In Proc. 17th SPIRE,
pages 334–346, 2010.

[21] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for searchable partial
sums. In Proc. 14th ISAAC, pages 505–516, 2003.

[22] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for searchable partial sums
with optimal worst-case performance. Theoretical Computer Science, 412(39):5176–5186, 2011.

[23] J. Jansson, K. Sadakane, and W.-K. Sung. CRAM: Compressed random access memory.
In Proc. 39th International Colloquium on Automata, Languages, and Programming (ICALP
2012), pages 510–521, 2012.

[24] T. Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets of
an ordered list. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2012), pages 283–292, 2012.

[25] S. Lee and K. Park. Dynamic rank-select structures with applications to run-length encoded
texts. In Proc. 18th CPM, LNCS 4580, pages 95–106, 2007.

[26] S. Lee and K. Park. Dynamic rank/select structures with applications to run-length encoded
texts. Theoretical Computer Science, 410(43):4402–4413, 2009.
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A.1 Colored Predecessor Queries

In this section we consider predecessor queries on a linked list, called colored predecessor queries.
The result of this section is used in the proof of Lemma 1. Suppose that each entry in an ordered
list L is colored with a symbol a ∈ Σ from an alphabet Σ = { 1, . . . , σ }. We will also sometimes
say that an entry e contains a symbol a. A colored predecessor query (eq, a) for an entry eq ∈ L
and a symbol a ∈ Σ asks for the rightmost entry e ∈ L that is colored with a and precedes eq. We
consider the problem of answering colored predecessor queries on a dynamic list L. This problem
was previously considered by Kopelowitz [24] who described a randomized O(log logm+ log log σ)-
time solution. Mortensen [31] described an O(log logm) time solution for the case σ = logc n and a
constant c. We present here a deterministic solution for an arbitrarily large alphabet. This result
is also of independent interest.

We start by describing a data structure that uses more than linear space. Then we will show
how the space usage can be reduced to linear and how the update time can be decreased.

Lemma 4 Let L be a list with m ≤ n entries. There exists an O(m log2m)-bit data structure that
answers colored predecessor queries on L in O(log logm(log log σ)2) time and supports insertions
and deletions in O(logm) time.

Proof : For a symbol a, let La denote the sublist of L that consists of entries containing a. Each
entry that contains a is augmented with a pointer to the next and the previous entries in La. We
also store an order maintenance data structure on L. This data structure can determine in O(1)
time whether e1 precedes e2 in L for two arbitrary entries e1 ∈ L and e2 ∈ L in a dynamic list L.
We refer to [7, 24] for a description of such a data structure.

We keep a balanced tree TL on L. For a node u ∈ TL, the set Col(u) consists of all symbols a
such that at least one leaf descendant of u contains a. In every leaf of TL, we keep pointers to all its
ancestors. For every a ∈ C(u), we also keep a.min(u) and a.max(u); a.min(u) (resp. a.max(u))
points to the leftmost (rightmost) element of L in the subtree of u colored with a.

Suppose that we want to find the rightmost entry ea ∈ L that contains a symbol a and precedes
an entry eq ∈ L. We look for the lowest ancestor u of (the leaf that contains) eq such that
a ∈ Dict(u). Using binary search on log n ancestors of eq, we can find u in O(log log n(log log σ)2)
time. If eq is in the right subtree of u, then ea = a.max(ul) where ul is the left child of u. If eq is
in the left subtree of u, then we find e′a = a.min(ur) where ur is the right child of u. The entry e′a
is the leftmost entry that follows eq. Hence the entry ea is the first occurrence of a in L before e′a.
In other words, ea precedes e′a in La.

When a new element e is inserted into L, we insert it into some leaf le of TL and a new entry
into the corresponding list La. Insertion into La requires that we find the rightmost entry ea that
is colored with a and precedes e in the list. This takes O(logm/ log log n) time as described above.
Then we visit all ancestors of le in TL. If necessary, we add a to C(v) in each visited node v. We
keep the tree balanced, using the algorithms of weight-balanced B-tree [3]. The cost of maintaining
TL so that its height remains O(logm) is O(logm) per insertion. Deletions are symmetric. When
an element e is deleted, we remove it from the list La and update Dict(u) in at most one ancestor
of e. Then we remove the leaf that contains e. The weight-balanced B-tree is not modified after
the deletion of a leaf. But when a fraction of leaves is deleted, we construct a new tree TL and
discard the old instance of TL. The process of re-building TL can be run in the background so that
the total worst-case cost of deleting e is O(logm). �
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Lemma 5 Let L be a list with m ≤ n entries. There exists an O(m logm)-bit data structure that
answers colored predecessor queries on L in O((log log σ)2 log logm) time and supports insertions
and deletions in O((log log σ)2 log logm) time.

Proof : We divide every La into O(|La|/ logm) blocks so that every block contains O(log2 m)
consecutive entries of La. If La consists of more than one block, then we maintain the list L′

a

that contains the first entry from every block of La. The list L1 contains all elements of L′
a for all

symbols a. We keep L1 in the data structure of Lemma 4. For any symbol a, all elements of La

are also stored in a data structure Ta that supports finger searches [18]: For any element eq ∈ L
and a finger e′a ∈ La, Ta can return the rightmost entry ea that is colored with a and precedes eq
in O(log d) comparisons, where d is the number of entries between e′a and ea in La. Finally we also
keep the list L in the union-split-find data structure of Mehlhorn [30]. Using this data structure,
we can find the first e′ ∈ L1 that precedes any e ∈ L in O(log logm) time. The data structure of
Mehlhorn et al. [30] uses O(m) words and supports updates in O(log logm) time.

In order to find ea colored with symbol a that precedes eq, we find the first entry e′ ∈ L1

that precedes eq. Then we identify the first entry e′a colored with a that precedes e′. There are
O(log2m) entries of La between e′a and ea. When e′a is known, we can find ea in O(log logm)
time using finger search on Ta. The total query time is dominated by the search in L1 and equals
O(log logm(log log σ)2).

When a new entry e of color a is inserted, we update L. Then we find the position of e in La

and update La and Ta. We can maintain the sizes of blocks in lists La so that each block consists
of O(log2 m) entries and there is one insertion into L1 for O(logm) insertions into L; details will be
given in the full version. Thus the total cost of an insertion is O((log log σ)2 log logm). Deletions
are symmetric. �

A.2 Prefix Sum Queries on a List

In this section we describe a data structure on a list L that is used in the proof of Lemma 1 in
Section 2.

Lemma 6 We can keep a dynamic list L in an O(m logm)-bit data structure D(L), where m is the
number of entries in L. D(L) can find the i-th entry in L for 1 ≤ i ≤ m in O(logm/ log log n) time.
D(L) can also compute the number of entries before a given element e ∈ L in O(logm/ log log n)
time. Insertions and deletions are also supported in O(logm/ log log n) time.

Proof : D(L) is implemented as a balanced tree with node degree Θ(logε n). In every internal node
we keep a data structure Pref (u); Pref (u) contains the total number n(ui) of elements stored below
every child ui of u. Pref (u) supports prefix sum queries (i.e., computes

∑t
i=1 n(ui) for any t) and

finds the largest j, such that
∑j

i=1 n(ui) ≤ q for any integer q. We implement Pref (u) as in Lemma
2.2 in [36] so that both types of queries are supported in O(1) time. Pref (u) uses linear space (in
the number of its elements) and can be updated in O(1) time. Pref (u) needs a look-up table of size
o(nε). To find the i-th entry in a list, we traverse the root-to-leaf path; in each visited node u we
find the child that contains the i-th entry using Pref (u). To find the number of entries preceding
a given entry e in a list, we traverse the leaf-to-root path π that starts in the leaf containing e. In
each visited node u we answer a query to Pref (u): if the j-th child uj of u is on π, then we compute

s(u) =
∑j−1

i=1 n(ui) using Pref (u). The total number of entries to the left of e is the sum of s(u)
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for all nodes u on π. Since we spend O(1) time in each visited node, both types of queries are
answered in O(1) time. An update operation leads to O(logm/ log log n) updates of data structures
Pref (u). The tree can be re-balanced using the weight-balanced B-tree [3], so that its height is
always bounded by O(logm/ log log n). �

A.3 Updating Data Structure in Lemma 2

When the size of a chunk Ci equals 2σ we start the procedure of re-building this chunk. During
the next σ/2 updates of Ci we retrieve all elements of Ci and insert them into data structures for
new chunks, C ′

i and C ′′
i . If an update is a deletion of some element e and e was already copied into

C ′
i or C ′′

i , then we remove the copy of e from C ′
i or C ′′

i . When all elements of Ci are copied into
C ′
i and C ′′

i , we say that a chunk Ci is a copied chunk. We keep ids of all copied chunks in a data
structure Ld. Whenever a copied chunk Ci is updated we also execute the same update of C ′

i or
C ′′
i .
We also run the following iterative procedure that replaces copied chunks with two chunks.

Each iteration starts by finding a chunk Ci with the largest number of elements. Then all arrays
Ba are updated in increasing order of a. We insert a 0-bit at an appropriate position of Ba so that
Ba = 1d10 . . . 1di0 . . . is changed to Ba = 1d10 . . . 1d

′
i01d

′′
i 0 . . . where di, d

′
i and d′′i denote the number

of a’s that occur in Ci, C
′
i and C ′′

i respectively. We keep a variable lastsym that equals the largest
symbol a, such that Ba is already updated. When all Ba are modified in the above manner, we also
update Bt and change it from Bt = 1n10 . . . 1ni0 . . . to Bt = 1n10 . . . 1n

′
i01n

′′
i 0 . . . where ni, n

′
i and

n′′
i denote the total number of symbols in Ci, C

′
i and C ′′

i respectively. Finally we delete the id of
Ci from Ld set lastsym = 0 and start the next iteration. Every iteration takes O(σ) time. When
a chunk is added to Ld, its size does not exceed 5σ/2. Using Theorem 5 in [11], we can show that
the size of each chunk in Ld grows by at most by σ · O(hn) where hn = O(log n) denotes the n-th
harmonic number.

We slightly modify the method for answering a select query. Let k denote the index of the last
chunk that was retrieved from Ld. That is, the above described iterative procedure is currently
changing bit vectors Ba and Bt changing Ba = . . . 1dk0 . . . to . . . 1d

′
k01d

′′
k0 . . . and Bt = . . . 1nk0 . . .

to . . . 1n
′
k01n

′′
k0 . . .. To answer a query selecta(i, S), we first find the index i2 of the chunk Ci2 that

contains the i-th occurrence of i, i2 = rank0(select1(i, Ba), Ba) + 1. If i2 < k or a > lastsym, we
proceed as described in the proof of Lemma 2. If i ≥ k and a ≤ lastsym, we decrement i2 by 1,
i2 = i2 − 1 and also proceed as in Lemma 2.

We also keep track of the number of chunks that contain no more than σ elements. If there are
at least n/2σ chunks containing at most σ symbols, then we start a global re-building procedure.
We retrieve all elements of S and insert them into a new data structure. In the new data structure
all elements are distributed among chunks, so that each chunk contains σ elements. The global
re-building process is executed during n/4σ updates.

A.4 Re-Building Compressed Data Structure in the Background

As shown in Section 4, we must bound the total number of symbols in S0 by O(n/r) for a parameter
r. We must also bound the number of symbols in Si for i ≥ 1 that are marked as deleted by O(n/r).
We run two alternating processes in the background to satisfy these requirements. In order to bound
the workspace we process sub-sequences Si one-by-one. For every i, 1 ≤ i ≤ r, we produce a new
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version S′ of Si containing all relevant elements of S0 (i.e., all elements of S0 that precede the
first element of Si+1 and follow the last element of Si−1 in S). In order to navigate in the new
version of Si, we must modify parts of auxiliary sequences (such as R, S̃, Ẽ, and B̃). Therefore
our background process also produces new versions for the relevant portions of auxiliary sequences.
When the new version of Si is created, we discard the old version; we also replace the parts of
auxiliary sequences with their new versions. The second background process removes elements
marked as deleted and updates Si in the same manner. A more detailed description follows.

We conceptually divide S0 into r substrings S0,i for 1 ≤ i ≤ r. An element e ∈ S0 is in S0,i for
1 < i < r iff e precedes the first element of Si+1 in S and follows the last element of Si−1 in S. An
element e ∈ S0 is in S0,1 if e precedes the first element of S2; e ∈ S0 is in S0,r if e follows the last
element of Sr−1. Likewise the sequence S̃ is conceptually divided into r substrings S̃1, . . . , S̃r. An
element e ∈ S̃ is in S̃i for some i ≥ 1 if e is a copy of some e′ ∈ Si or e is a copy of some e′ ∈ S0

and e′ ∈ S0,i. We conceptually divide the binary sequence R using the same principle: R[j] is in
Ri if the j-th element of S is from Si or the j-th element of S is some e′ ∈ S0 such that e′ ∈ S0,i.
Other binary sequences are divided in the same way. The procedure for moving elements of S0 into
Si for some i, 1 ≤ i ≤ r, is as follows.

Step 1 We start by creating a new instance Sc of Si and a new instance S̃c of S̃i; we also create
new instances of Ri and the i-th parts of other binary sequences; namely Rc, Dc

a for all a ∈ Σ
such that a occurs in Si, B̃

c and Ẽc are copies of Ri, Da,i, B̃i and Ẽi respectively. The cost of
creating new instances for parts of auxiliary sequences can be distributed among the following
updates of S, as will be explained below. At the end of Step 1, Rc is a copy of Ri; likewise
Dc

a, B̃
c and Ẽc are copies of Da,i, B̃i and Ẽi respectively. These newly created sequences will

be called copy sequences.

Step 2 Then we insert the elements of S0,i at appropriate positions of S
c
i . We modify the sequence

S̃c accordingly. Changes in S̃c and Sc
i also lead to changes in copy sequences Rc, Dc

a, B̃
c and

Ẽc. We distribute the cost of Step 2 among updates of S. We will say that all elements that
are kept in S0 (resp. in Sc

0) upon completion of Step 1 are old elements. When a sequence
S is updated, we spend O(log n/ log log n) time on the following actions: (i) we find the next
unprocessed element en in Sc

0 (symbols in Sc
0 are processed in the left-to-right order); we set

the bit corresponding to en in Rc to 1 (ii) we insert en at appropriate position of Sc
i (iii) if

necessary, we update S̃c; copy sequences B̃c and Ẽc are updated accordingly. We may also
need to update copy sequences after an update of S. If the update of S is an insertion, and
a new element e is inserted into S0,i, then we also insert e into Sc

0. If an element e is deleted
and e ∈ S0,i, then we remove the copy of e from Sc

0; changes in Sc
0 can also lead to changes

in S̃c. If a symbol a is deleted from Si, then we update Dc
a accordingly.

Step 3 When Sc
i is completed, we discard old Si, set Si = Sc

i , and start using the new Si from
now on. Simultaneously we replace the relevant section of S̃ with S̃c. We also replace the
relevant parts of R, Da, B̃ and Ẽ with Rc, Dc

a, B̃
c and Ẽc.

In order to execute the above background process, we must implement binary sequences, so that
two additional procedures are supported: A binary sequence of length m is divided into r sectors
(substrings) of length O(m/r) each. We can produce a copy of each sector. The cost of producing
a copy is distributed among m log logn

2r logn updates; when the procedure is finished, the sector and its
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copy are equal. We can perform updates on the original sequence and on a sector copy. We can also
replace a sector with its copy and discard the original sector. Same procedures are also supported
for the non-binary sequence S̃. We can implement these procedures in such way that the cost
of rank, select, access, and updates is not increased. Implementation of auxiliary procedures is
explained in Section A.5.

Step 1 of the above process takes O(n/r) time. Step 2 (insertion of new elements into Si)
takes O(vi(log n/ log log n)) time, where vi is the number of elements inserted into S′

i. Step 3
takes O(log n/ log log n) time. Thus old elements of S0 are moved to Si for i ≥ 1 in O(n) +∑

i vi(log n/ log log n) = O(n) time. This process can be distributed among n/4r updates.
The process of purging the sequences S1, . . ., Sr is based on the same approach. For each

i = 1, . . . , r, we create a new instance of Si without deleted elements; then we discard the old
instance and start using the new version of Si. Relevant parts of S̃ and binary sequences are also
updated. The re-building of Si is implemented in the same way as in the procedure of moving
elements from S0 to Si for i ≥ 1. The cost of purging Si is distributed among n/4r following
updates. Two above described background processes are run alternatingly; the first process starts
when the either the number of elements in S0 or the number of elements marked as deleted is equal
to n/4r. In this way we guarantee that the number of elements in S0 and the number of deleted
elements does not exceed n/r.

A.5 Auxiliary Procedures for Binary and Non-Binary Sequences

In this section we show how a sequence S can be stored in such a way that additional processes
that create a copy for a part of S are supported. Furthermore we can update the copied part and
later replace the original part with its modified copy. We start by describing a binary sequence
that supports an additional operation init(S,m); init(S,m) initializes an empty sequence of length
m that consists of m 0-bits. Recall that λ = log n/ log log n.

Lemma 7 A binary sequence S that supports rank1(i, S), select1(i, S), access(i, S), insertions,
deletions and init(S,m) for any m ≤ n can be stored in O(s log n

s ) + o(n) bits, where s is the
number of 1-bits and n is the length of the sequence. All operations, except for init(S,m) take O(λ)
time; init(S,m) can be executed in O(1) time.

Proof : We divide the sequence S into blocks Bi such that each Bi consists of Θ(log2 n) bits. Each
block is further divided into sub-blocks of Θ(log1/2 n) bits. We will say that a block or a sub-
block is non-empty if it contains at least one 1-bit. A doubly-linked list L contains one entry for
each non-empty block. We also keep a list Li for every block Bi that contains 1-bits; Li contains
one entry for each non-empty sub-block. For each entry ei of L we keep the number of 1’s in the
corresponding block Bi; we also keep the total number of bits in blocks Bj+1, Bj+2, . . ., Bi−1, where
Bj is the rightmost non-empty block that precedes Bi. We maintain a data structure that enables
us to find the block that contains the i-th bit in the sequence. We also maintain a data structure
that can find the block containing the i-th 1-bit (or 0-bit) and the number of 1-bits (0-bits) that
precede a specified block. We maintain the same data structure for each sub-block. All these data
structures are implemented as balanced trees with node degree logε n for a small constant ε > 0.
Each node is augmented with additional information about the number of 1-bits (resp. the total
number of bits) in the subtrees of its children. Implementation is the same as for data structures
D(L) and D(La) in Lemma 1.
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Positions of 1-bits in the same sub-block are difference coded: for every 1-bit we store the
difference between its position and the position of the preceding 1-bit in the same block; for the
first 1-bit in the block, we store its position in the block. The list L and its data structures can be
kept in O(n/ log n) bits. All lists Li and their data structures are kept in O(n(log log n/

√
log n))

bits. Difference coding of 1-bits in all blocks consumes O(s log n
s ) bits.

To answer a query rank1(i, S) we find the block Bi and its sub-block Bi,j containing the i-th bit.
Then we find the number of 1-bits that precede Bk in L and the number of 1-bits that precede Bk,j

in Lk. We can find the number of 1-bits that precede the bit with global position i in Bk,j using a
look-up table. Summing three above values, we obtain rank1(i, S). Queries select1(i, S), rank0(i, S),
and rank1(i, S) are computed in a similar way. Thus all queries are answered in O(log n/ log log n)
time.

Since we only keep non-empty blocks and sub-blocks, operation init(S,m) takes constant time.
Insertions and deletions are implemented as in previously known data structures supporting rank
and select on binary sequences. When an element is inserted, we find its block Bi and its sub-block;
we insert the new element into its sub-block and update lists L and Li if necessary. We maintain
sizes of blocks and sub-blocks using standard techniques. Deletions are symmetric. Hence insertions
and deletions are supported in O(log n/ log log n) time. �

Now we describe how a copy of a binary sequence S can be created. Let λ = log n/ log log n.

Lemma 8 Let S be a binary sequence of length s. Procedure copy(), that produces a copy of S,
can be implemented as a background process that runs during O(s/ log n) consecutive updates. We
can support updates on the original sequence and its copy in O(λ) time. Operations rank, select,
and access are executed in O(λ) time. The underlying data structure uses sH0(S) + s+ o(s) bits.

Proof : The procedure for creating a copy S′ of S consists of two stages. During the first stage we
produce a copy of S. S is represented in the same way as in [35]. As described in [35], S is split
into chunks and we maintain data structures that support counting the number of 0-bits (resp.
1-bits) among the chunks and searching for the chunk that contains the i-th 0-bit (or 1-bit). We
can create a copy by copying the original sequence of chunks. The data structure that supports
counting and searching among chunks is essentially a tree with O(s′) nodes; we can create this tree
in O(s′) time, where s′ = O(s/ log n) is the number of chunks.

Thus the background process that creates a copy of S takes O(s/ log n) time. We can distribute
its cost among O(s/(λ log n)) updates where λ = log n/ log log n. We keep information about these
updates in four data structures. The data structure U keeps information about positions of updates:
the i-th 1-bit in a sequence U is the position of the i-th update (insertion or deletion) in S. Thus
U contains one bit for every element in S and one bit for every element that was deleted from S.
Updates are counted in the left-to-right order and U is implemented as in Lemma 7. We also keep
a bit sequence T which indicates the type of updates on S: T [i] = 0 if the i-th update stored in U
is a deletion and T [i] = 1 if the i-th update is an insertion. The sequence Bn contains the values
of elements inserted into S. A sequence Ud helps us navigate between S and U ; Ud contains one
bit for every element in S and one bit for every element that was deleted from S. If Ud[j] = 1,
then the corresponding element was already deleted from S; if Ud[j] = 0, then the corresponding
element is in S. During each update, we perform the following operations:

• a new element is inserted into or deleted from S at position i
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• Let i′ = select0(i, Ud) be the position of the i-th 0-bit in Ud. If the update of S is an insertion,
we insert a 1-bit into Ud at position i′. If the update is a deletion, we replace the i′-th bit in
S with a 0-bit (replacement is implemented by deleting a 1-bit and inserting a 0-bit at the
same position).

• If the update of S is an insertion, we insert a 1-bit at position i′ into U ; if the update is a
deletion we replace the i′-th bit of U with a 1-bit. We also insert a bit indicating the type of
update into the sequence T . If an update is an insertion, we add the value of a new bit into
a bit sequence Bn.

• we spend O(λ) time on constructing a copy sequence.

The first stage is finished after O(s/(λ log n)) updates of S. When the first stage is completed,
S and its copy sequence S′ differ because O(s/(λ log n)) most recent updates changed the original
sequence but were not performed on its copy. During the second stage we synchronize S and S′.
The synchronisation procedure is also distributed among O(s/λ log n) updates. During every up-
date operation, we proceed as follows:
- a new element is inserted into S or deleted from S. We also change the copy sequence S′ accord-
ingly. If the position i of an element in S is known, then we can find its position in in S′ using
sequences Ud, U and T . Using Ud, we find the position id = select0(i, Ud) corresponding to i in
U . Using U , we find the number u of updates that precede id; using T we can find the number of
insertions and deletions among the first u updates.
- we also execute updates stored in sequences U , T , and Bn. We retrieve the position i =
select1(1, U) of the first 1-bit stored in U and find the position i′ in S′ that corresponds to the
position i in S. Then we either insert a new element at the position i′ or remove the i′-th element
from S′ according to the data stored in T and Bn. Finally we delete the i-th bit from U and Ud.
We also delete the corresponding bit from T and remove the corresponding symbol from Bn (if the
processed update is an insertion).
At the end of the second stage S′ and S are equivalent. �

Now we consider the sequence S of length s that is divided into s/r contiguous parts for r =
logO(1) n. Each part, called a sector of S, consists of O(s/r) elements. The procedure copysector()
creates a copy of an arbitrary sector. The procedure copysector() can be executed in the background
during a sequence of s/(rλ) updates. Furthermore we can split a sector into two sectors and merge
two adjacent sectors in the same time. Last, we can also replace a sector with its copy in O(r)
time. Update operations are supported on both S itself and on the copy of a sector (we assume
that at any time a copy of only one sector is created or used).

Lemma 9 Let S be a binary sequence of length s ≤ n and let S be divided into r sectors of
O(s/r) symbols. Procedure copysector(), that produces a copy of a sector, can be implemented as a
background process that runs during O(s/(rλ log n)) consecutive updates. Procedures splitsector()
and mergesectors() can be executed in the same way. Operation replacesector() can be executed
in O(log log n) time. The underlying data structure uses sH0(S) + o(n) bits.

Proof : Every sector is maintained in the data structure of Lemma 8. Furthermore we maintain a
sequence G that keeps the numbers of elements in every sector. Sequences G0 and G1 maintain the
number of 0’s and 1’s in every sector. Using G and data structures for individual sectors, we can
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answer rank, select, and access queries on S. Procedure copysector() is implemented as copy() on a
sector of S. When a copy of a sector is ready, we can support updates on this copy. Besides we can
also replace a sector with its copy and update the data structure on the sequence G accordingly;
this operation takes O(log log n) time. Splitting and merging of sectors is implemented in a similar
way. Suppose that we want to split a sector Si into S′

i and S′′
i . We employ the same two-stage

procedure that was used to create a copy of a sector. During the first stage we assign elements of
Si to S′

i and S′′
i . Then we create the data structures for S′

i and S′′
i . Updates that are relevant for

new versions are deposited in data structures U1, T1, B1 and U2, T2, B2 respectively. During the
second stage we execute updates stored in Ui, Ti, and Bi for i = 1, 2. Auxiliary data structures are
realized in the same way as in the procedure copysector(). When new sectors S′

i and S′′
i are ready,

we replace Si with S′
i and S′′

i and update G. �

We can implement similar procedures for a sequence over a general alphabet. We assume,
however, that copies of sectors are produced consecutively: first copy of the first sector is created;
when the first sector is replaced with a (possibly modified) copy sector, we create the copy of the
next sector, etc. In this scenario, it is easy to maintain the dynamic sequence that supports the
copying, splitting and merging of sectors.

Lemma 10 Let S be a sequence of length s ≤ n over an alphabet Σ = { 1, . . . σ } and let S be divided
into r sectors. Procedure copynextsector(), that produces a copy of a sector, can be implemented as
a background process that runs during O(s/(rλ)) consecutive updates. Procedures splitnextsector()
and mergesectors() can be executed in the same way. Operation replacenextsector can be executed
in O(λ) time. The data structure for S uses O(s log σ) bits.

Proof : Elements of S are distributed among two dynamic data structure, Sold and Snew. Both of
them are implemented as in Lemma 2. Originally Snew is empty and all elements of S are in Sold.
Procedure copynextsector() traverses elements of the next sector and appends them at the end of
the new sequence Snew. When replacenextsector() is executed for the last (rightmost) sector, we
set Sold = Snew and Snew = ∅. Let ip denote the number of elements in all sectors of Sold for which
operation replacenextsector() was executed. Let im denote the total number of elements currently
kept in Snew. We can answer access(i, S) by retrieving Snew[i] if i ≤ im or retrieving S[i− im + ip]
if i > im. We can answer a query ranka(i, S) as follows. If i ≤ im, ranka(i, S) = ranka(i, Snew).
If i > im, ranka(i, S) = ranka(i− im + ip, Sold). To answer a query selecta(i, S) we check whether
ranka(im, Snew) ≥ i. If this condition is satisfied, then selecta(i, S) = selecta(i, Snew); otherwise
selecta(i, S) = selecta(i

′, Sold) where i′ = i− ranka(im, Snew) + ranka(ip, Sold). �

A.6 Analysis

We show that deleting n/r symbols from a sequence S does not increase too much the k-th order en-
tropy. This result is needed in Section 5 to prove the space bound of nHk+o(n log σ)+O(n(log n)/r).
Let S = S[1] . . . S[n]. Let S0 denote the subsequence of symbols that are deleted from S and let
Sn = S \ S0. Let |S0| = n/r for a parameter r. We want to estimate |Sn|Hk(Sn) − |S|Hk(S) for
some parameter k ≤ α logσ n− 1 and α < 1.

A context ci is an arbitrary sequence of length k over an alphabet σ; let fa,i denote the number
of times a symbol a is preceded by context ci in S and ni =

∑
a∈Σ fa,i. The k-th order empirical

entropy is defined as
∑

ci∈Σk

∑
a∈Σ fa,i log

ni
fa,i

.
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For a context cl, let nl be the number of times it occurs in S and let n′
l be the number of times

it occurs in S \ S0. Suppose that a symbol S[i] is deleted. It changes the context for the next k
symbols S[i+ 1], ..., S[i + k]. We will say that one deletion spoils k symbols and moves them to a
different context. If a symbol S[l] is spoiled and the context of S[l] in Sn is cl, then S[l] is encoded
with at most log(n′

l) bits. Let pl = n′
l−nl be the number of new symbols in the context cl. Let f

′
a,l

be the frequency of a new symbol a in cl (that is, the number of times a spoiled symbol a appears
in the context cl in Sn). Then the total encoding length of spoiled symbols in the context cl does

not exceed
∑

a f
′
a,l log

n′
l

f ′
a,l

where
∑

a f
′
a,l = pl. By Jensen’s inequality,

∑
a f

′
a,l log

n′
l

f ′
a,l

≤ pl log
n′
l

pl/σ
.

Summing over all contexts cl, the total encoding length of spoiled symbols can be bounded by
∑

l pl(log
n′
l

pl
+ log σ).

The total number m of symbols that are spoiled is between n/r and (n/r)k − 1 because each
deletion spoils between 1 and k following symbols. The number of spoiled symbols does not exceed
n independently of r and k. Hence

∑
l pl ≤ (n/r) logσ n. Besides

∑
l pl ≤

∑
l n

′
l ≤ n. Therefore

∑
l pl log

n′
l

pl
= O(n). To prove the latter fact, we divide all contexts cl into classes L1, L2, . . ., Llog∗ n.

Li contains all context indices l, such that fi−1(n) >
n′
l

pl
≥ fi(n), where f0(n) = n and fi(n) =

(log(i) n)2 for i ≥ 1. For any Li,
∑

l∈Li
pl log

n′
l

pl
≤ n

(log(i) n)2
log(fi−1(n)) = n

(log(i) n)2
O(log(i) n) =

O( n
log(i) n

). Hence
∑

pl log
n′
l

pl
=

∑log∗ n
i=1

∑
l∈Li

pl log
n′
l

pl
= n

∑log∗ n
i=1 O( 1

log(i) n
). Hence

∑ n′
l

pl
= O(n)

because
∑log∗ n

i=1
1

log(i) n
= O(1). Thus the total encoding length of all spoiled symbols is bounded

by Eadd = O(n(1 + logn
r )).

Another factor that may increase the encoding length is that spoiled symbols are moved to new
contexts and thus the encoding length of all other symbols in these new contexts slightly increases.
Consider a context ci that occurred ni times in S and ni + fi times in S \ S0 for some fi > 0. We
say that a symbol S[l] = a that follows ci in S \ S0 is an old occurrence if this occurrence of a is
also preceded by ci in S. The encoding length for all old occurrences in Sn is

∑σ
a=1 occa,i log

ni+fi
occa,i

.

The total encoding length for the same occurrences in S is
∑σ

a=1 occa,i log
ni

occa,i
. The difference

between encoding lengths of old occurrences in S and Sn is inc(ci) = ni log
ni+fi
ni

. If fi ≤ ni,
then inc(ci) ≤ ni. Summing up the differences over all contexts ci such that fi ≤ ni, we obtain
E1 ≤

∑
i ni ≤ n. If fi > ni, then inc(ci) ≤ ni(log

fi
ni

+1) Summing up over all contexts ci such that

fi > ni, we get E2 =
∑

i ni(log
fi
ni

+ 1). Since
∑

i ni <
∑

i fi ≤ n,
∑

i ni < n and
∑

i ni log
fi
ni

≤ n.
Hence, E2 = O(n).

Thus |Sn|Hk(Sn) − |S|Hk(S) = Eadd + E1 + E2 = O(n(1 + logn
r )). We must also account for

elements that are marked as deleted, but are still stored in sequences Si for i ≥ 1. The number of
elements that are marked as deleted is bounded by O(n/r). These elements need O(n logn

r ) bits.
Every deleted element spoils up to k symbols of S. Using the same analysis as above, the extra
encoding length due to spoiled symbols can be estimated to be O(n(1 + logn

r )). Thus all static

sequences Si for i ≥ 1 are stored in nHk +O(n(1 + logn
r )) bits.

A.7 Static Data Structure

In this section we describe a static data structure supporting access, rank and select queries. In
comparison to previous static data structures, we obtain two additional results. Our data structure
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can be constructed quickly if the alphabet size σ is small. At the same time we show that our data
structure supports extraction of a substring of length ℓ in optimal O(log n/ log log n + ℓ/ logσ n)
time. As before, let S denote a sequence of length n over an alphabet Σ = { 1 . . . , σ }.

Our static representation keeps the sequence S in compressed form following the approach of[13].

S is represented as a sequence SMof meta-symbols over an alphabet Σℓ for ℓ = ⌈ logσ n
2 ⌉. That is,

each meta-symbol encodes ℓ symbols of the original sequence. It is shown in [13] that H0(S
M ) ≤

Hk(S) + (n/ℓ)k log σ simultaneously for all k ≤ ℓ. We can keep SM in (n/ℓ)(H0(S
M ) +O(1)) bits

using e.g. Huffman coding.

Data Structure for Rank and Select Queries. We split S into blocks of size σ. For every
a ∈ [1, σ], we keep a binary sequence Ba = 1s101s20 . . . 1sl0 where si denotes the number of a’s
occurrences in the i-th block. It was shown in [5] how query ranka(i, S) or selecta(i, S) can be
reduced to O(1) rank and select queries on a block C and O(1) queries on Ba. The data structure
for a block C is as follows. We keep a bit vector V = 1n101n20 . . . 1nσ where na is the number of
times a occurs in C. Let π(i) denote the position of C[i] in the stable sorted ordering. That is, π
is the permutation of C obtained by stably sorting the symbols of C. Let π−1 denote the inverse
of π. Then selecta(i, C) = π−1(j) where j = (

∑a−1
g=1 ng) + i. We can find

∑p
g=1 ng for any p ≤ σ by

answering one rank and one select query on V .
Let t = log σ/(log log σ)3. For every symbol a, 1 ≤ a ≤ σ, the set Fa contains every t-th

occurrence of a in C; that is Fa contains all j such that C[j] = a and ranka(j, C) = t · i for some
integer i. We keep a y-trie data structure on Fa, so that for any q we can find the largest j ∈ Fa

satisfying j ≤ q. Furthermore we store values of ranka(j, C) for all j ∈ Fa. For each symbol
C[j], we also keep R[j] = (rankC[j](j, C) mod t). We need σ log t bits to store the array R and
O((σ/t) log σ) = O(σ(log log σ)3) bits to store F . Hence the total space usage is o(σ log σ).

Let rank′a(i, S) denote the partial rank query: if S[i] = a, rank′a(i, S) = ranka(i, S); otherwise
rank′a(i, S) is undefined. If C[i] = a, rank′a(i, C) = R[i]+ ranka(j, C) where j is the largest position
in Fa such that j ≤ i. Since j can be found in (log log σ) time, rank′C[i](i, C) can be computed in

O(log log σ) time. We can compute π(i) as follows. If C[i] = a, then π(i) = (
∑a−1

j=1 nj)+rank′a(i, C).

Since rank′ can be computed in O(log log σ) time, we can find π(i) for any i in O(log log σ) time.
Using the data structure of [32], we can compute π−1(i) in O(t · f(σ)) time using O(n log σ/t)
additional bits, where f(σ) is the time needed to compute f(σ). This data structure works as
follows: We decompose the permutation π = π(1), π(2), . . . , π(σ) into cycles. A cycle is the shortest
subsequence i1, . . . , is of π such that π(ij) = ij+1 for 1 ≤ j < s and π(is) = i1. For every cycle of
length s ≥ t, we select every t-th element and mark it. We keep the value of π−t for the marked
elements where π−t denotes the inverse of π iterated t times. In order to find π−1(i), we compute
π(i), π2(i) = π(π(i)), π3(i), . . . until we reach a marked position im or πk(i) = i for some k. If
πk(i) = i, then π−1(i) = πk−1(i). If we reached a marked position im, we compute i′ = π−t(im).
Then we identify π(i′), π2(i′), . . . until πl(i′) = i. Clearly π−1(i) = πl−1(i′) in this case. It is easy
to check that we must compute π at most t times; details can be found in [32]. Thus π−1(i) is
computed in O(t · log log σ) time. We already showed how to answer select query using π−1. Hence
selecta(i, C) is also answered in O(t log log σ) time. To answer a rank query ranka(i, C), we first
find the largest j ∈ Fa such that j ≤ i. If ranka(j, C) = s · t, then st ≤ ranka(i, C) < (s + 1)t. We
can find the exact value of ranka(i, C) by answering O(log t) select queries as described in[15, 5].
Hence ranka(i, C) is computed in O(t log t log log σ) time. We set t = log σ/(log log σ)3. Hence a
query ranka(i, C) is answered in O(log σ/ log log σ) time.
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Linear Construction Time. The data structure described above can be constructed in O(n)
time. We can split S into blocks in linear time. Then we stably sort each block and compute
the number of times na the symbol a ∈ Σ occurs in a block. We can implement stable sorting
by replacing each C[i] with C ′[i] = C[i] · σ + i and applying radix sort to the resulting sequence.
Using sorted array C ′, we can: (i) compute π(i) for each position i within a block; (ii) find values
of na for each symbol a and construct the sequence V ; (iii) generate sets F ′

a and the array R.
All these auxiliary structures can be created in linear time. We can construct a y-trie for Fa in
O(|Fa|(log log σ)3) time: each element of a y-trie is kept in O(log log σ) dictionary data structures;
using the deterministic method described in [38], we can construct a dictionary withm ≤ σ elements
in O(m(log log σ)2) time. Hence the total time needed to construct a y-trie is O(|Fa|(log log σ)3).
Since all Fa contain O(σ/t) elements, y-tries for all Fa are created in O(σ(log log σ)3/t + σ) time.
Since we can compute π(i) for each i in O(1) time using C ′, we can produce a data structure for
computing π−1 in linear time. Thus the data structure for answering rank and select queries in a
block can be created in O(σ) time. When values of na are known for all blocks we can construct
global bit sequences Ba for each a ∈ Σ.

Data Structure for log1/2 n < σ ≤ 2log
1/3 n. In this case the data structure can be constructed

in less than linear time. We assume that the symbols of S are initially packed into words of log n
bits so that each word contains Θ(logσ n) symbols. We split the sequence S into blocks of size

s = σ log n. We keep exactly the same data structures for each block as in the case of σ > 2log
1/3 n

and bit sequences Ba defined in the same way as above. We start by splitting S into blocks and
producing an array C ′ for each block C so that C ′[i] = C[i] · s + i. This step takes O(s/ log2/3 n)
time. C ′ can be sorted in O(n/ log1/3 n) time, using the ideas of sorting algorithms for small
integers described in [2] and [1] . Then we can traverse sorted array C ′ and generate sets that must
be stored in data structures Fa in O((s/ log2/3 n) + σ) time. All Fa contain O(s/t) elements and
can be constructed in O((s/t)(log log n)3 + σ) = O((s/t)(log log n)3) time. We traverse C ′ again
and obtain R′[i] = R[C ′[i]] for each i. Given R′, we can construct R by “reverse sorting”. Let
R1[i] = C ′[i] ∗ (log σ) +R′[i]. That is, the first log σ most significant bits of R1[i] contain a symbol
C[j] of the sequence C, the next log s bits contain its position j in C, the next log log σ bits contain
the value of R[j]. We sort R1 according to the value of bits at positions log σ + 1, . . ., log σ + log s
(bits that correspond to the positions j of symbols in the original sequence) and then discard the
first log σ + log s bits. The resulting array is the array R.

We can also use C ′ to construct the bit sequence V : we traverse C ′ and compute na for all a,
1 ≤ a ≤ σ. When all na are known, we can produce V in O(s/ log1/3 n) time; a data structure
supporting rank and select on V can be also produced in O(s/ log1/3 n) time.

Finally we need to create the data structure for computing π−1. Recall that we have to find
all cycles of length at least t and select every t-th element in a cycle. Let d = logf n for f = 1/6.
During the first stage we create s/d tuples so that each tuple is of the form (j, π(j), π2(j), . . . , πr(j))
for some r ≤ d and each integer i, 1 ≤ i ≤ s occurs in at most one tuple. First we obtain values
π(i) for all i ∈ [1, s] and keep tuples (i, π(i)) in the array P1. Using C ′, we can obtain P1 in
O(s/ log1/3 n) time. We traverse P1 and remove all tuples (i, π(i)) such that π(i) = i. Then we
obtain the sequence P2 that contains tuples (i, π(i), π2(i)) for all i such that (i, π(i)) is still in P1.
We create a new instance P ′

1 of P1 and sort all tuples by their second components. Elements of P ′
1

are tuples (i, π(i)) sorted by π(i). Elements of P1 are tuples (i, π(i)) sorted by i. Both P1 and P ′
1 are

traversed simultaneously. If the j-th tuple in P1 is (ij , π(ij)) and π(ij) = v, then the j-th tuple in
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P ′
1 is (v, π(v)). When we read the P1[j] and P ′

1[j], we create the new tuple (ij , π(ij), π(v) = π2(ij))
and keep it in a sequence P2. When P2 is constructed, we discard P ′

1; then we traverse P2 and
remove all (ik, π(ik), π

2(ik)) such that π2(ik) = π(ik). This procedure is iterated d − 1 times.
During the k-th iteration, we sort tuples in Pk−1 by their last components and obtain P ′

k−1. Then

we merge P ′
k−1 with P1 and obtain Pk. We traverse Pk and remove tuples (ij , . . . , π

k(ij)) satisfying

πk(ij) = ij. Each iteration takes O(s/ log1/3 n) time. Hence Pd is obtained in O(s/ log1/6 n) time.
At the end of the first stage we obtain the sequence Pd. Every value i that is not in a cycle of

length v ≤ d is stored in exactly one tuple of Pd. Hence Pd consists of s/d tuples. We can easily
process all tuples in O(|Pd|) time and find all values i, 1 ≤ i ≤ s, that must be marked. We can
find π−t(i) for all marked positions i in O(s/d) time. Thus the structure for computing π−1 is
constructed in O(s/ log1/6 n) time. The total time needed to produce the static data structure for
a sequence S is thus O(|S|/ log1/6 n).

Data Structure for σ < log1/2 n In the case when σ is very small, we use a different data
structure. We implement rank and select operations on S using the result of Theorem 13 in [6].
Their data structure splits S into chunks of size logσ n/2. Each chunk is kept as in [37]. We can
traverse S and obtain compressed representation of each chunk in O(n/ logσ n) time. We maintain
certain bit sequences for chunks that are described in [6] and can be constructed in O(nσ/ logσ n)
time. Since σ < log1/2 n, O(nσ/ logσ n) = O(n log log n/ log1/2 n). This representation of S also
supports fast substring extraction: since S is kept in chunks, we can decode all symbols from a
chunk in O(1) time and retrieve a string of length l in O(l/ logσ n) time.

Theorem 4 There exists a data structure D that that stores a sequence S[1, n] in nHk +
O(n(log log σ)3) bits, where σ is the alphabet size, and supports queries access, rank, and select
in O(log n/ log log n) time. D can be constructed in O(n) time.

Suppose that σ ≤ 2log
1/3 n and S is initially stored in O(n/ logσ n) words, so that every word contains

Θ(logσ n) consecutive symbols; then D can be constructed in O(n/ log1/6 n) time.

Finally we remark about re-building static sequences that is needed by background processes de-
scribed in Section A.4. When a subsequence Si is re-built, we retrieve Si using the algorithm for
substring extraction in O(|Si|/ logσ n) time. The decoded sequence Si is then kept in uncompressed
form; we keep Si in a sequence of words, so that each word contains logσ n symbols. We can apply
the construction algorithms described in this section to uncompressed sequence Si. The workspace
needed to store Si in plain form is O(|Si| log σ) bits.

A.8 Operation select′ on S̃ and Reporting a Substring of a Binary

Sequence

Operation select′a(i, S̃). Let Sa be the subsequence of S that consists of all occurrences of a
symbol a. We maintain a bit sequence W̃ for each sequence Sa. For every element of Sa, we keep
one or two consecutive bits in W̃ . If the j-th occurrence of a is not stored in S̃, then we represent
it by a 0; if the j-th occurrence is stored in S̃ (i.e., it is stored in either S′

a or S0), then we represent
it by a two-bit sequence 10. Let f denote the number of symbols in S′

a among the first j symbols of
Sa. Then Sa[j] is represented by the (j+ f)-th bit in W̃ or by the (j+ f)-th and (j+ f +1)-st bits
in W̃ : if Sa[j] is stored in S′

a, then W̃ [f + j] = 1 and W̃ [f + j+1] = 0; otherwise W̃ [f + j] = 0 and
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W̃ [f + j + 1] represents the next symbol in Sa. We can answer rank and select queries on W̃ and
support updates on W̃ in O(log n/ log log n) time. Let v1 = select0(i, W̃ ) and v2 = rank1(v1, W̃ ).
Then select′a(i, S̃) = v2.

Reporting a Substring in a Binary Sequence. Let M be a binary sequence. We prove the
following Lemma:

Lemma 11 Let M be a binary sequence of length n with O(n/r) 0-bits. We can store M in
O((n/r) log r) bits, so that any substring M [i..i+ℓ−1] can be obtained in O(log n/ log log n+ℓ/ log n)
time. Insertions and deletions are supported in O(log n/ log log n) time.

Proof : We store M using a variant of run-length encoding: each substring that consists of d 1-bits
followed by a 0-bit, where 0 ≤ d ≤ 2 log2 n, is encoded as an integer d. For instance, a sequence
100011110 will be encoded as 1, 0, 0, 0, 4. We divide the run-length encoded sequence into blocks,
such that each block consists of at least log n/8 log log n and at most log n/4 run-lengths and the
length of each block is at most log n/2 bits. Run-lengths are delta-encoded so that a run of length
d uses log d+ o(log d) bits. Thus each block contains Ω(log n) bits.

We also maintain an additional data structure A that finds for each position j in M , the
run-length d that encodes M [j] and the block that contains the run-length d. A encodes every run-
length in unary. Thus a run of length d is represented by 1d0. Since M contains O(n/r) 0-bits, M
consists of O(n/r) runs of 1’s followed by a 0. Hence A consists of O(n/r) 0’s and O(n) 1-bits. The
sequence A′ encodes in unary the number of runs in every block of M . Using standard methods,
we can keep A and A′ in O((n/r) log r) bits and support queries and updates in O(log n/ log log n)
time. Using rank and select queries on A and A′, we can find the block that encodes M [j] and
the position of M [j] in its block for any j, 1 ≤ j ≤ n, in O(log n/ log log n) time. We also keep a
look-up table Tbl that enables us to retrieve all k elements stored in a block in O(k/ log n) time;
for every block, Tbl contains the sequence of bits encoded by this block. Since there are O(n1/2)
different blocks and each block encodes a poly-logarithmic number of elements, Tbl uses o(n) bits.

Each block contains either at least log2 n/4 log log n 1-bits or at least log n/4 log log n 0-bits.
Hence the total number of blocks is O(n(log log n/ log2 n) + (n/r)(log log n/ log n)). Each block
needs O(log n) bits. Hence all blocks use O((n/r) log log n) bits.

To extract a substring M [i..i+ ℓ− 1], we start by finding the block Bl that contains M [i] and
the position of M [i] in Bl. Then we simply decode the remaining part of the block Bl and the
following blocks until O(ℓ) symbols are decoded. �

A.9 Substring Extraction

Now we show how the fully-dynamic data structure described in Section 5 supports the operation
of retrieving a substring of length ℓ. Suppose that we want to extract the substring S[i..i+ ℓ]. We
keep a copy Sw of subsequence S0 implemented as follows. Sw is split into words, such that each
word contains between logσ n/4 and logσ n/2 symbols of S0. Let wi be the number of symbols in
the i-th word; we maintain a prefix-sum data structure on wi. Using this data structure, we can
find the word Sw[j] that contains the i-th symbol of S0 in O(log n/ log log n) time. We can find the
position oi of S0[i] in that word in O(1) time. Using table look-up, we can extract the remaining
symbols of Sw[j] in O(1) time. If wj−oi < ℓ, we extract the following symbols from words Sw[j+1],
Sw[j + 2], . . . until ℓ symbols are reported.
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The static data structure on Si can be used to extract ℓ symbols in O(log n/ log log n+ℓ/ logσ n)
time. Some of these symbols can, however, be marked as deleted. We use the following additional
structures in order to extract Θ(logσ n) undeleted symbols in O(1) time. Recall that each sequence

Si is stored as a sequence of meta-symbols SM
i and every meta-symbol represents ⌈ logσ n

2 ⌉ symbols.
We say that a meta-symbol SM

i [j] is spoiled if at least logσ n/4 symbols represented by SM
i [j] are

marked as deleted. A symbol is spoiled if it is stored in a spoiled meta-symbol. Positions of spoiled
symbols are indicated by a binary sequence SPOSi. That is, SPOSi[j] = 1 iff the symbol Si[j] is
not spoiled. Symbols stored in spoiled meta-symbols are also kept in a sequence Vi. Representation
of Vi is similar to representation of Sw, but it contains only undeleted symbols stored in spoiled
meta-symbols. Vi is divided into words and each word V M

i [j] contains up to logσ n/2 symbols. If a
word V M

i [j] contains less than logσ n/4 symbols, than the last symbol in this word is followed by a
non-spoiled symbol. Each word is augmented with a field next. Let fol(j) denote the symbol that
follows the last symbol in V M

i [j]. V M
i [j].next = NULL if fol(j) is spoiled; otherwise V M

i [j].next
points to the position of fol(j) in SM

i . A sequence V POSi indicates boundaries of words in Vi:
V POSi contains a 0-bit for every symbol in Vi that is not the last symbol in its word V M

i ; V POSi

contains a two-bit substring 01 for every symbol that is the last symbol in its word. Thus each
symbol is encoded by a 0-bit and the end of every word in V is encoded by a 1-bit. If a symbol
Si[j] is not marked as deleted and kept in a spoiled meta-symbol, then we can find the position of
Si[j] in Vi by answering one rank query on SPOSi and one rank and one select query on V POSi.

The total number of symbols that are marked as deleted in all Si is bounded by O(n/r). Hence
the number of spoiled symbols in all Si is also O(n/r). Non-deleted symbols kept in a spoiled meta-
symbol are stored in at most three words of V M

i . Hence the total number of words in all V M
i is

bounded by O(n/(r logσ n)). Since every word uses O(log n) bits of space, all Vi need O((n/r) log σ)
bits. All bit sequences V POSi and SPOSi use O(n/r) and O((n/r) log r) bits respectively. Hence
we need O((n/r) log σ) additional bits in order to support substring extraction.

Suppose that a string St[i..i + l] must be extracted. We find the meta-symbol SM
t [j0] that

contains St[i] and decode meta-symbols SM
t [j0], S

M
t [j0+1], . . . and output the appropriate symbols

until l symbols are reported or a spoiled meta-symbol is encountered. If the symbol SM
t [j] is spoiled,

we find the position of SM
t [j] in Vt and output symbols from Vt. If we enumerated symbols of V M

t [j1]
and V M

t [j1].next 6= Null, then we switch back to SM
t [j2], where SM

t [j2] is the meta-symbol that is
pointed to by V M

t [j1].next, and decode symbols from SM
t [j2], S

M
t [j2+1], . . . until a spoiled symbol

is encountered. We output symbols from V M
t [j1 + 1], . . ., V M

t [j2] until V
M
t [j2].next 6= NULL. We

proceed in the same way until l symbols are decoded. Each meta-symbol of St and each word of Vt

is processed in O(1) time. It is easy to check that the total number of words and meta-symbols is
bounded by O(l/ logσ n). Every retrieved non-spoiled symbol in SM

t , except for the first one and
the last one, contains Θ(logσ n) symbols. Every processed word in V M

t , except for the last one,
either contains Θ(logσ n) symbols or is followed by a non-spoiled meta-symbol. The position of the
first accessed spoiled symbol in Vt is computed in O(log n/ log log n) time. The position of the first
accessed meta-symbol in SM

t is also computed in O(log n/ log log n) time. Thus the total query
time is O(log n/ log log n+ l/ logσ n).

The extraction of l symbols S[i..i + l] from the global sequence S is implemented as follows.
We find i0 = rank0(i, R) and i1 = rank1(i, R). We compute t such that

∑t−1
j=1 Size[j] < i1 ≤

∑j
j=1 Size[j] and extract substring St[f..f + l] for f = i1 − ∑t−1

j=1 Size[j]. If the end of St is
reached, we extract remaining symbols from St+1, St+2, . . .. We also extract S0[i0..i0+ l]. Let Str1
be the substring extracted from the static subsequence (or subsequences) and let Str0 be the string

25



extracted from S0. We can merge the prefix of Str1 with the prefix of Str0 using R. At each step
we consider the next logσ n/6 symbols of Str0 and logσ n/6 symbols of Str1 that are not processed
yet. Suppose that these symbols are stored in words W0 and W1 respectively. We read the next
logσ n/6 bits of R and keep them in a bit sequence RW . Using a look-up table, we can obtain the
sequence Wres that consists of logσ n/6 following symbols in O(1) time: if RW [j] = 1, then the j-th
symbol of Wres is the r0-th symbol of W0 where r0 is the number of 0’s among the first j bits of
RW ; otherwise the j-th symbol of Wres is the r1-th symbol of W1 where r1 is the number of 1’s
among the first j bits of RW . The sequence Wres contains the next logσ n/6 symbols of S[i..i+ l].
Proceeding in the same way, we can obtain the substring S[i..i+ l] in O(6l/ logσ n) = O(l/ logσ n)
time.
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