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Abstract. This paper presents a novel nonparametric supervised spectral-spatial 
classification method for multispectral image. In multispectral images, if an un-
known pixel shows similar digital number (DN) vectors as pixels in the training 
class, it will obtain higher posterior probability when assuming DN vectors of 
different classes follow a type of statistical distribution. The proposed method 
assumes the DN vectors follow a Gaussian mixture distribution in each class. 
Particularly, we use Bayesian nonparametric method to adaptively estimate the 
parameters in Gaussian mixture model. Then, we construct an anisotropic mul-
tilevel logistic spatial prior to capture the spatial contextual information  
provided by multispectral image. Finally, simulated annealing optimization al-
gorithm is used to accomplish the maximum a posteriori classification. The 
proposed approach is compared with recently advanced multispectral image 
classification methods. The comparison results of classification suggested that 
the proposed approach outperformed other classifiers in overall accuracy and 
kappa coefficient. 

Keywords: Bayesian nonparametric model · Gaussian mixture model · Markov 
random field · Multispectral image classification 

1 Introduction 

Land cover, which could provide valuable information for understanding the nature of 
hydrological, geographical, agricultural, ecological, and socioeconomic systems, is an 
underlying variable. It could impact and connect many aspects of human life with 
physical environments [1]-[2]. As the rapid development of spatial, spectral and tem-
poral resolutions of remote sensing image over the past years, multispectral image 
classification has become one of the most common approaches to extract land cover 
information in remote sensing. 

Focusing on multispectral image classification, the strategies proposed in literature 
generally are categorized as unsupervised and supervised schemes [3]-[5]. Unsuper-
vised methods investigate data statistics by subdividing the image into clusters of 
pixels with similar characteristics, e.g., iterative self-organizing data analysis 
(ISODATA) and K-means classification. They do not require labeled information 
provided by user, while the procedure may lose correlation between the clusters it 
found and classes user desired. For handling this problem, supervised techniques are 
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The remainder of this paper is organized as follows. Section 2 introduces the pro-
posed nonparametric supervised spectral-spatial classification method in detail. Sec-
tion 3 describes the data set we test on this paper and illustrates the performance of 
the proposed method in multispectral image classification. Conclusions are outlined in 
Section 4. 

2 The Proposed Method 

Similar to MLC method, we suggest that the DN vectors in multispectral image are 
regarded as random variable x , x dR∈  where d  denotes the number of bands in 
multispectral image and y  denotes the corresponding class label. For an unknown 

pixel x  to be classified, according to the principle of maximum posterior probability, 
we employ Bayes’ rules to arrange the unknown pixels into predefined classes. 

 
(y) (x | y)

(y | x) (y) (x | y)
(x)

p p
p p p

p
= ∝  (1) 

where (x | y)p  is the likelihood function and (y)p  is the prior over the labels. 

2.1 GMM Modeling for Likelihood Function 

Given a remote sensing data set of a certain class 1x  { }N
i i= , where N  denotes the 

number of pixels in the training set. An observation x i  can be modeled as being 

generated from a Gaussian Mixture Model, which is described as: 

 
x

| ( | )

| (· | )
i

i i k

c Multinomial

c k Gaussian

π π
θ

∼
= ∼

⋅
 (2) 

where 1 2( , , , )Kπ π π π=   denotes mixing coefficients, ic  denotes cluster label and 

kθ  stands for ( , )k kμ Σ  which are the mean vector and covariance matrix of each 

Gaussian component, respectively. Inspired by nonparametric statistics method, we 
assume the number of components in GMM is infinite, that is K → ∞ . Then BNP 
method is used to adaptively estimate the parameters in Gaussian mixture model. 

Based on the infinite GMM (IGMM) assumption above, the parameters π  and kθ  

are defined as following: 
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where α  denotes concentration parameter in the Dirichlet distribution,
| ( )Stickπ α α∼  stands for: 
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We choose Gaussian distribution and Inverse Wishart distribution to describe the 
mean vector and covariance matrix in GMM [12] because they are conjugate priors 
for the Gaussian distribution, thus we can get a closed solution form for the posterior 
distribution for 1{ }  N

i iC c ==  and 1{ }  K
k kθ =Θ =  when K → ∞ .  

Given an observation set 1{x }N
i i= , we intend to infer the parameters { , },Cπ Θ  

based on their posterior distribution. However, the posterior distribution cannot be 
computed analytically. The Gibbs sampler, a widely used Markov Chain Monte Carlo 
(MCMC) method, is imposed as an alternative way to sample their posterior probabil-
ities and the obtained samples will approximate the posterior distribution precisely 
[13]. Under IGMM, the posterior distribution for the unknown parameters is defined 
as [14]: 
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Based on Eq. (3)-(5), we are able to integrate out π  and get the posterior distribu-
tions for Θ  and C . The infinite Gaussian mixture model with Chinese restaurant 
process sampler we used is a Matlab implementation provided by Wood et al [13]. 
Then the likelihood function (x | y)p  in Bayes’ formula of Eq. (1) has the following 

form: 
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2.2 Anisotropic MLL for Spatial Prior 

For an unknown pixel xi  to be classified, according to the principle of maximum 

likelihood (ML), which could calculate through Eq. (7), we can obtain 'y i , where 

denotes the corresponding spectral classification label. Given an input multispectral 
image, a spectral classification map will be generated, then we use connected compo-
nent analysis (CCA) to obtain connected region area iR  of each pixel, as shown  

in Fig. 2. 
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provide more evidences for changing the label of a relative large region as that region 
may be a meaningful homogeneous region. Hence, we suppose the proposed aniso-
tropic MLL spatial prior which named weighted MRF (WMRF) would lead to a more 
smooth and stable result compared with traditional isotropic MLL. 

2.3 Computing the MAP Estimate via Simulated Annealing 

Since it is difficult to maximize the joint probability of an MRF. The simulated an-
nealing (SA) algorithm is used to compute the MAP estimate of final spectral-spatial 
classification map based on the spectral classification map [15] The SA algorithm for 
optimizing the global energy in the multispectral image can be summarized as an 
iteration of minimization of local energy function associated with randomly chosen 
pixels. The local energy function of a given pixel x  can described as: 

 
(y | x) ln (x | y) ln (y( ) ln )

( )ln (x | y)

x

y

p pU

p U

p∝ − −
∝ − +

∝ −
 (11) 

where ln (x | y)p−  is the spectral energy term obtained by Eq. (7), ( )yU  is the 

spatial energy function computed over the local neighborhood via y ,(  y )w
i jV . In our 

work, an eight-neighborhood system is considered. The spectral spatial classification 
label is finally given by: 

 
^

arg min (x)y U=   (12) 

3 Experiments  

3.1 Data Sets 

The multispectral image we used in this paper are acquired from SPOT6 satellite. It 
has four spectral bands that include blue band (0.455 to 0.525 mμ  ), green band 

(0.530 to 0.590 mμ ), red band (0.625 to 0.695 mμ ) and near infrared band (0.760 

to 0.890 mμ ). The spatial resolution is 2 m for each band. Two data sets are used to 

test the proposed classification algorithm and we also compare it with other advanced 
classification algorithms such as MinDC, MDC, MLC, MLR and SVM. These two 
data sets was acquired on September 30, 2012, covering Xidian University and Xia-
nyang international airport in Xi’an, Shaanxi province. The image in University data 
set was 804 690×  pixels and six classes of interests were considered: bare soil, build-
ing, meadow, water, shadow and gravel. The image in Airport data set was 324 426×  
pixels and four classes of interests were considered: bare soil, building, meadow and 
airport. Fig. 3 and Fig. 4 present false color images and reference data about two data 
sets. Training sets are randomly selected from reference data set and the size of train-
ing sets keep the ratio of 0.02 to test sets. Pixels from the training set are excluded 
from the test set in each case and vice versa. 
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(a) (b)   (a)   (b) 

Fig. 3. Xidian University Area image. (a) 
Three band false color composite. (b) Refer-
ence data. 

Fig. 4. Xianyang Airport Area image. (a) 
Three band false color composite. (b) Refer-
ence data. 

3.2 Experimental Results 

The infinite Gaussian mixture model with Chinese restaurant process sampler expe-
rimental results of two data sets are presented in Fig. 5 and Fig. 6. Fig. 5(a) reflects 
the trend of latent clusters number in the process of BNP mixture sampler sweeps. 
Fig. 5(b) presents the statistic frequency histogram of each class, which describes the 
latent clusters’ quantity of data. We use the maximum frequency of occurrence to 
denote the number of latent cluster. Namely, the number of latent cluster of bare soil, 
building, meadow, water, shadow and gravel are 3, 3, 4, 2, 2 and 2 respectively in the 
first data set. The number of latent cluster of bare soil, building, meadow and airport 
are 2, 2, 3 and 2 in the second data set, respectively. 

 
(a) (b) 

Fig. 5. BNP approach to sample the number of latent clusters. A. Bare soil; B. Building; C. 
Meadow; D. Water; E. Shadow; F. Gravel; 

 
(a) (b) 

Fig. 6. BNP approach to sample the number of latent clusters. A. Bare soil; B. Building; C. 
Meadow; D. Airport; 
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The data’s frequency distributions and different Gaussian mixture fitting functions 
of DN values for building and meadow belonged to first data set are presented in Fig. 
7. The data’s frequency distributions and different Gaussian mixture fitting functions 
of DN values for bare soil and airport belonged to the second data set are present in 
Fig. 8. According to the fitting results we can know the number of latent clusters es-
timated by BNP mixtures is consistent with the data’s real frequency distributions, 
and meanwhile, the Gaussian mixture distribution can describe the data set’s statistic-
al property approximately. 

 

Fig. 7. Frequency distribution of DN values and its fitting likelihood functions by the Gaussian 
distribution, and Gaussian mixture distribution for bands blue, green, red and near infrared for 
building and meadow respectively. 

 

Fig. 8. Frequency distribution of DN values and its fitting likelihood functions by the Gaussian 
distribution, and Gaussian mixture distribution for bands blue, green, red and near infrared for 
bare soil and airport respectively. 
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The accuracy of proposed classification algorithm was assessed by the reference 
data using overall accuracies, and Kappa coefficient. The overall accuracies and the 
Kappa coefficients for MinDC, MDC, MLC, MLR, SVM and IGMM are presented in 
Table 1 and 2. Meanwhile, the overall accuracies for above spectral classification 
methods which imposing isotropic MLL and anisotropic MLL spatial prior named 
MLCMLL, MLRMLL, SVMMLL, IGMMMLL, MLCWMRF, MLRWMRF, 
SVMWMRF, IGMMWMRF are presented in Table 3 and 4. To obtain unbiased con-
clusions, the classification process was repeated 10 times with randomly selected 
different training and test sets and the average accuracies are given. 

Table 1. Comparison of Spectral Classification Results in First Data set 

 MinDC MDC MLC MLR SVM IGMM 
Overall 

Accuracy 
68.31 77.61 80.94 71.64 84.67 85.30 

Kappa 
coefficient 

0.5744 0.7022 0.7421 0.6067 0.7861 0.7996 

Table 2. Comparison of Spectral Classification Results in Second Data set 

 MinDC MDC MLC MLR SVM IGMM 
Overall 

Accuracy 
84.35 85.92 90.06 88.39 93.80 92.40 

Kappa 
coefficient 

0.7673 0.7952 0.8548 0.8267 0.9080 0.8877 

Table 3. Comparison of Spectral-Spatial Classification Results in First Data set 

 1β =  3β =  5β =  10β =  

MLCMLL 86.79 87.44 87.55 87.57 
MLRMLL 73.88 74.11 74.16 74.18 
SVMMLL 88.13 88.48 88.50 88.52 

IGMMMLL 92.52 93.55 93.59 93.64 
MLCWMRF 89.38 88.98 88.74 88.62 
MLRWMRF 76.89 76.47 76.34 76.12 
SVMWMRF 88.53 88.72 88.56 88.45 

IGMMWMRF 94.83 94.75 94.58 94.57 

Table 4. Comparison of Spectral-Spatial Classification Results in Second Data set 

 1β =  3β =  5β =  10β =  

MLCMLL 94.27 95.14 95.13 95.16 
MLRMLL 91.69 92.15 92.18 92.17 
SVMMLL 95.67 95.87 95.87 95.88 

IGMMMLL 96.42 97.10 97.21 97.37 
MLCWMRF 97.30 97.21 97.17 97.05 
MLRWMRF 92.68 92.50 92.65 92.64 
SVMWMRF 95.79 95.89 95.92 95.82 

IGMMWMRF 97.51 97.35 97.33 97.37 
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In general, IGMM and SVM could produce relatively better overall accuracy and 
Kappa coefficient comparison with MinDC, MDC, MLC and MLR according to the 
spectral classification results. The proposed IGMM spectral classification method 
produce relatively better results can be explained as achieved a better statistics fitting 
precision at the cost of higher model complexity. The proposed anisotropic MLL prior 
achieve better performance than traditional isotropic MLL prior according to the spec-
tral-spatial classification results. It can be explained as big size region has relatively 
higher impact to adjacent neighboring pixels than those small size region, thus the 
proposed anisotropic MLL prior could get a more smooth and stable results. Particu-
larly, the proposed nonparametric supervised spectral-spatial classification algorithm 
outperformed than other recently advanced spectral-spatial classification method. The 
thematic maps obtained from the two data sets can be seen in Fig. 9 and Fig. 10. The 
gray scale in Fig. 9(c) and Fig. 10(c) denotes the region area information of corres-
ponding pixel (light represents very big area, dark represents very small area), which 
captured by spectral classification. 

 

  
(a) (b) (c) (d) 

Fig. 9. Thematic maps obtained with the Xidian University data set: (a) IGMM method, (b) 
IGMMMLL method, (c) Area map, (d) IGMMWMRF method 

  
(a) (b) (c) (d) 

Fig. 10. Thematic maps obtained with the Xianyang International airport data set: (a) IGMM 
method, (b) IGMMMLL method, (c) Area map, (d) IGMMWMRF method. 

4 Conclusion 

This paper presents a new Bayesian approach with weighted Markov Random Fields 
for multispectral image classification. The proposed method shows competitive per-
formance when compared with recent classification method, e.g. MinDC, MDC, 
MLC, MLR and SVM. 
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