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Abstract. Robust object tracking has been a challenging issue due to pose vari-
ation, illumination change, abrupt motion, background clutter, and etc.. Com-
pressive sensing theory provided a new and effective way for real-time object 
tracking. In this paper, a compressive tracking method based on Particle Filter 
(PFCT) was proposed. The candidate objects were predicted based on Particle 
Filter. The sparse random Gaussian matrix was as the measurement matrix. The 
element number of a measurement vector was set as a special value, which was 
different for each video sequence. The proposed PFCT method ran in real-time 
and outperformed FCT on many challenging video sequences in terms of effi-
ciency, accuracy and robustness. 
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1 Introduction 

Robust visual object tracking has been one of the challenging tasks in the field of com-
puter vision due to many factors such as pose variation, illumination change, abrupt 
motion, background clutter, and etc. For these challenging factors, the multi-feature 
fusion could improve the tracking stability [1]. However, more features led to the in-
crease of computing complexity, not satisfying the requirement of the real-time track-
ing. Here the compressive sensing (CS) theory [2-3] stated that an original high-
dimensional sparse or compressible signal can be reconstructed from a low-dimensional 
signal, whose dimension was far less than the number of Nyquist sampling. The CS 
theory came to fit in as a new and effective way for the stable and real-time tracking [1]. 
And the visual object tracking based on CS has received a lot of attentions [4-9]. In the 
field of computer vision, reference [4] first imported CS to the face recognition, where 
the face recognition was regarded as the classification based on the sparse vectors, and 
where it was shown that sparse representation was effective for face recognition. Then 
based on [4], reference [5] first imported the sparse representation to the field of visual 
object tracking. For a tracked or candidate object, the sparse representation based on the 
over-completed dictionary was achieved by solving the 1l  regularized least squares. 
Reference [6] reduced the feature dimension in [5] based on a sparse random Gaussian 
matrix of CS. Though the feature dimensions were reduced based on CS in these refer-
ences, the complex sparse decomposition still affected the real-time of these tracking 
methods. Reference [7] decreased the dimension of Haar-like feature vectors based on a 
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sparse random Gaussian matrix. And the object was distinguished in the compressed 
domain based on a simple naive Bayes classifier, avoiding the complex sparse decom-
position. The method not only enhanced the stability of the tracking, but ensured that 
the tracking was undertaken in real-time. Reference [8] further improved the tracking 
stability via an oversaturated sub-region classifier at the cost of victimizing the real-time 
of [7]. Reference [9] improved the real-time of [7] by a coarse-to-fine searching strate-
gy. Reference [10] used a widely adopted particle filter framework [11] and a modified 
naive Bayes classifier for improving the tracking performance of [7]. These methods did 
show that it was an effective means for improving the real-time to distinguish the 
tracked object in the compressed domain. Nevertheless, it is still worth while studying 
the object tracking based on CS. 

Three compressive tracking methods [7-9] reached the real-time tracking, however 
it was still time consuming for the strategy of searching candidates in a traversal style. 
References [7-10] used a similar measurement matrix with the fixed number of mea-
surement elements, which was not always adapted to any video sequence. Reference 
[12] has shown that there is an adaptive measurement number for a different se-
quence. Inspired by [7-12], we proposed a compressive tracking based on Particle 
Filter (PFCT). In the proposed method, the candidate objects are predicted based on 
Particle Filter. The sparse random Gaussian matrix is as the measurement matrix. The 
element number of a measurement vector is set as a less value than that of [7-10]. The 
less value is different for each video sequence, which can result in a higher success 
rate. The rest of this paper is organized as follows. In Section 2, the related work 
about [9] is briefly introduced and the motivation of this paper is given. In Section 3, 
the proposed PFCT is indicated. Experiments in Section 4 show the performance of 
our proposed PFCT on challenging sequences, and Section 5 concludes this paper. 

2 Fast Compressive Tracking 

Reference [9] has given the method of Fast Compressive Tracking (FCT). In this 
section, we briefly introduce the tracking process of FCT and give the motivation of 
our proposed method. 

FCT compressed a high-dimensional Haar-like feature vector to a low-dimensional 
measurement vector based on CS. The compressing process could be defined as the 
Formula (1).  

 v Rx  (1) 

where 1nx   is a high-dimensional Haar-like feature vector of a given tracked or 
candidate region, 1mv   is a corresponding low-dimensional measurement vector, 
and ( )m nR m n   is a sparse random Gaussian matrix, which was defined as the 
Formula (2). 
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where s  is the sparse degree of R , and m  is the element number of v . FCT sets

10/( log ( )) / 4 / 2.4s n a n n n    with 6 1010 ~ 10n   and 0.4a  . The non-zero 
element number of every row vector for R  was 4 at most. m  was set as 100, assum-
ing the original signals are 10-sparse. 

The ith element iv  of v  was the inner product about the ith row vector of R  and 
x . Assuming all elements of v  were independently distributed, v  could be modeled 
with a naive Bayes classifier as the Formula (3). 
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where ( 1) ( 0) 0.5p y p y    , {0,1}y . FCT searched the candidates with a 
coarse-to-fine strategy. A candidate was the current tracking result, whose ( )H v  was 
higher than ( )H v  of other candidates. The conditional distributions ( | 1)ip v y   and 

( | 0)ip v y   in ( )H v  were assumed to be Gaussian distributed with four parameters 
1 1 0 0( , , , )i i i i    , as shown in Formula (4). 1

i  and 1
i  were updated by the Formula 

(5), so were 0
i  and 0

i  updated. 
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where 0   was the update rate, 1  and 1  were the Gaussian distribution para-
meters of iv  as the Formula (6), and q  was the number of the positive samples. 
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From the tracking processes of FCT, the coarse-to-fine strategy was a traversal 
style, which still resulted in the unnecessary computing about a large amount of can-
didates. FCT assumed that all original Haar-like feature vectors were 10-sparse, and 
then m  was set as 100. We experimented on the success rates with m  from 1 to 100 
on a lot of video sequences, and six representative curves were shown in Fig. 1.  
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Fig. 1. Curves of m and SR for FCT. 

As shown in Fig. 1, 10m   was not always corresponding to a higher success rate, 
and the success rate did not increase with the increase of m . Inspired by [7-12] and 
these experiment curves, we proposed a compressive tracking based on Particle Filter. 

3 Proposed Method 

The proposed method is a compressive tracking based on Particle Filter (PFCT), 
which is an extension of the FCT [9]. In our proposed method, the candidate objects 
are predicted based on Particle Filter. The sparse random Gaussian matrix is as the 
measurement matrix. The number of measurement elements is set as a special value 
for a high success rate. The specifically value is different for each tracked object. 

3.1 The Element Number of Measurement Vector 

The CS theory [13] indicated that the bound for m  was from Formula (7), which 
ensured that an original signal can be reconstructed.  

 log( / )m cK n K  (7) 

where n  and K  are the dimension and the sparsity of an original signal, and c  is a 
very little constant depending on the original signal [13]. However, for a specifically 
feature vector, it is difficult to obtain its sparsity K  and its constant c  and to calcu-
late an exactm . So the value of m  is obtained by an experimental observation style 
in PFCT. For the task of object tracking, it was expected that the value of m  can 
result in a high success rate. According to the phenomenon in Fig. 1, we set a value of 
m  in 1 to 100, which can result in a higher success rate than other values in 1 to 100. 
For a different tracked object, the value of m  is different. 
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3.2 Calculation Method of Particle Weights 

Similar to [9], PFCT constructs an object classifier with a naive Bayes classifier in the 
Formula (3). A candidate is the current tracking result, whose ( )H v  is higher than 

( )H v  of other candidates. The candidate as the tracking result should have a high 
weight. In the Formula (3), a value of ( )H v  is positive or negative. However, the 
weight of a particle in Particle Filter cannot be negative. A value of ( )H v  must be 
transformed to a reasonable particle weight.  

A minimum min
( )pH v  can be obtained from the ( )H v  values of all particles, 

where minp  is the serial number of a particle, calculated by the Formula (8). The new 

positive evaluation 
^
( )jH v  of the jth particle can be calculated by the Formula (9). 

The weight of the jth particle can be calculated by the Formula (10), where   is a 
little positive constant for avoiding a very little particle weight. 
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4 Experiments 

The proposed method was evaluated in comparison with 4 state-of-the-art trackers on 
10 publicly available challenging sequences. The Cliffbar, Dollar, Girl, Sylv, Tiger1 
and Tiger2 sequences were provided in [14], the Basketball, Singer1 and Singer2 
sequences were taken in [15], and the Box sequence was obtained in [16]. The 4 com-
pared trackers were FCT [9], CT [8], ODFS [17] and TLD [18]. FCT, CT, ODFS and 
TLD used the source codes in MATLAB provided by the authors with default para-
meters. The proposed PFCT was implemented in MATLAB based on the FCT code, 
whose particle number was fixed as 100. For fair comparisons, the initial tracking 
positions and the ground truth positions of 10 sequences were publicly available, and 
the 5 trackers ran on the same hardware platform with Intel Quad-Core i5-3470 
3.2GHz CPU and 4GB memory. The comparisons were performed from both quantit-
ative evaluation and visual evaluation. The experimental results showed that PFCT 
ran faster and performed favorably against other 4 trackers on 10 challenging se-
quences in terms of efficiency, accuracy and robustness. 

4.1 Quantitative Evaluation 

In order to evaluate the overall performances of the 5 trackers, we performed the quantit-
ative evaluations with 3 evaluation metrics: success rate (SR) [9], center location error 
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(CLE) [9] and average frame per second (FPS). An object in a sequence frame was suc-

cessfully tracked if the score is not less than 0.5,
( )
( )

T G

T G

area ROI ROI
score

area ROI ROI





, where 

TROI  and GROI were respectively the tracking bounding box and the ground truth 
bounding box. The CLE was the Euclidean distance between the central position of the 
tracking bounding box and the central position of the ground truth bounding box. The 
FPS was the frame number per second. 

Table 1. m and SR (%). Bold fonts indicated the best performances. 

Sequence PFCT FCT CT ODFS TLD 
Basketball 82.60 (100) 27.21  25.83  76.66 0.97 
Box 80.60 (20) 25.86  38.36  37.50 68.10 
Cliffbar 98.46 (18) 98.46  87.69  93.85 41.54 
Dollar 100.00 (23) 98.46  92.31  80.00 40.00 
Girl 75.00 (3) 30.00  35.00  35.00 49.00 
Singer1 100.00 (7) 29.71  92.00  100.00 32.86 
Singer2 69.86 (11) 28.49  32.05  41.64 2.74 
Sylv 99.25 (59) 54.10  58.96  55.60 95.52 
Tiger1 42.86 (16) 55.71  62.86  4.29 41.43 
Tiger2 75.00 (19) 68.06  54.17  36.11 22.22 
average m 35.47 100 50 -- -- 
average SR 84.12 37.04  47.94 63.61 29.99 

 

  

  
Fig. 2. Curves of m and SR for PFCT. 

Table 1 showed the evaluation results in terms of m  and SR. The m  was the 
number of measurement elements for a compressive tracker. m  was fixed as 100 for 
FCT, and m  was fixed as 50 for CT. For PFCT, m  was different for each sequence, 
which was noted in the bracket of the PFCT column and resulted in a high SR. Fig. 2 
listed a part of the changing curves of SR with m  for PFCT, where m  is from 1 to 
100. With the changes of m , the variation directions were similar to those in FCT. 
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The average m  of PFCT was 35.47. Except for the Tiger1 sequence, PFCT obtained 
a higher SR than other methods on 9 sequences. The average SR of PFCT was 84.12, 
higher than other methods. 

Table 2. CLE (in pixels) amd average FPS. Bold fonts indicated the best performances. 

Sequence PFCT FCT CT ODFS TLD 
Basketball 16.85  90.97  66.55  12.35  211.62  
Box 22.53  107.38  31.83  133.93  10.35  
Cliffbar 6.11  6.48  7.64  5.96  2.78  
Dollar 16.46  16.76  19.85  17.35  67.40  
Girl 25.99  40.90  37.48  37.67  28.82  
Singer1 23.81  22.59  23.15  15.16  14.18  
Singer2 33.52  49.90  86.84  53.53  199.64  
Sylv 5.70  16.78  13.86  13.89  5.76  
Tiger1 30.10  22.51  22.00  78.07  4.36  
Tiger2 15.85  11.62  15.61  12.33  11.00  
average CLE 14.99 27.50 25.57  30.84  23.66 
average FPS 197.10 83.20 87.81 98.52 14.50 

 
Table 2 showed the evaluation results about CLE and FPS. TLD on 5 sequences 

obtained a less CLE, because the CLE for TLD was calculated only based on the lo-
cated frames, these located frames were a part of all frames, and the CLE for other 4 
methods was calculated based on all frames. However, the average CLE of PFCT was 
less than those of other methods. The average FPS of PFCT was 197.10, far higher 
than those of other methods. 

4.2 Visual Evaluation 
For the Basketball sequence, the athletes underwent similar disturbances and abrupt 
motion. The ODFS and PFCT methods performed well with a higher SR and a less 
CLE. PFCT reduced the computing about a lot of candidates in many unnecessary 
directions, which brought a higher FPS, more than two times of FCT FPS. At the 
same time, the disturbances from other candidates in many unnecessary directions 
were avoided also, which brought that the SR of PFCT was higher than that of FCT, 
though the value of m is same to that of FCT. 

The box in Box was in a clutter background, the object in Sylv underwent pose 
variation and illumination change, and the girl in Girl underwent occlusion and pose 
variation. For the three sequences, the TLD and PFCT methods performed well. The 
value of m in PFCT was less than that in FCT or CT, but a higher SR was obtained.  

For the Cliffbar and Dollar sequences, the objects underwent clutter background. 
FCT, CT, ODFS and PFCT performed well. But the value of m for PFCT was less 
than FCT and CT, and PFCT obtained a comparative SR.  

For the Singer1 and Singer2 sequences, the singers underwent illumination change. 
CT, ODFS and PFCT performed well on Singer1, and ODFS and PFCT obtained a SR to 
100%. However, PFCT with m=7 achieved a far higher SR than FCT with m=100. Only 
PFCT performed well on Singer2 with a less m.  
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Fig. 3. Screenshots for some sample tracking results. 
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For the Tiger1 and Tiger2 sequences, the tiger toys underwent abrupt motion. FCT, 
CT and PFCT performed well. The SR of PFCT on Tiger2 was slightly higher than 
that of FCT or CT. The SR of PFCT on Tiger1 was slightly less than that of FCT or 
CT, however the value of m for PFCT was far less than that for FCT or CT. Some 
sample tracking results about these sequences were shown in Fig. 3. 

5 Conclusions 

In this paper, we proposed a compressive tracking based on Particle Filter (PFCT). 
The candidate objects were predicted based on Particle Filter, which calculated mi-
nority candidates and avoided the disturbances from other candidates in many unne-
cessary directions. The element number of a measurement vector was set as a special 
value among 1 to 100. The element number was different for each video sequence. 
The little disturbances and the special element number resulted in a high SR. The 
minority candidates and the small element number brought a high real-time. The ex-
periments on challenging sequences showed that PFCT performed well in terms of 
SR, CLE and FPS. 
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