Abstract
Robust object tracking has been a challenging issue due to pose variation, illumination change, abrupt motion, background clutter, and etc.. Compressive sensing theory provided a new and effective way for real-time object tracking. In this paper, a compressive tracking method based on Particle Filter (PFCT) was proposed. The candidate objects were predicted based on Particle Filter. The sparse random Gaussian matrix was as the measurement matrix. The element number of a measurement vector was set as a special value, which was different for each video sequence. The proposed PFCT method ran in real-time and outperformed FCT on many challenging video sequences in terms of efficiency, accuracy and robustness.
Chapter PDF
Similar content being viewed by others
References
Li, X., Hu, W., Shen, C., et al.: A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology (TIST) 4(4), 58 (2013)
Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)
Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)
Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: IEEE Conf. Computer Vision (ICCV), Kyoto, pp. 1436–1443 (2009)
Li, H.X., Shen, C.H., et al.: Real-time visual tracking using compressive sensing. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), USA, pp. 1305–1312 (2011)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Zhu, Q., Yan, J., Deng, D.: Compressive tracking via oversaturated sub-region classifiers. IET Comput. Vis. 7(6), 448–455 (2013)
Zhang, K., Zhang, L., Yang, M.: Fast Compressive Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Yao, X., Zhou, Y.: Real-time compressive tracking with a particle filter framework. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 242–249. Springer, Heidelberg (2014)
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)
Gao, Y., Zhou, H., Zhang, X.: Enhanced fast compressive tracking based on adaptive measurement matrix. IET Computer Vision 2015. doi:10.1049/iet-cvi.2014.0431
Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process Magazine 25(2), 21–30 (2008)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1269–1276 (2010)
Santner, J., Leistner, C., Saffari, A., et al.: Prost: parallel robust online simple tracking. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 723–730 (2010)
Zhang, K., Zhang, L., Yang, M.: Real-Time Object Tracking Via Online Discriminative Feature Selection. IEEE Trans. Image Process. 22(12), 4664–4677 (2013)
Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: bootstrapping binary classifiers by structural constraints. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 49–56 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, Y., Zhou, H., Yuan, G., Zhang, X. (2015). Compressive Tracking Based on Particle Filter. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds) Computer Vision. CCCV 2015. Communications in Computer and Information Science, vol 546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48558-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-662-48558-3_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48557-6
Online ISBN: 978-3-662-48558-3
eBook Packages: Computer ScienceComputer Science (R0)