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Abstract. Multi-view feature extraction is an attractive research topic
in computer vision domain, since it can well reveal the inherent property
of images. Most existing multi-view feature extraction methods focus on
investigating the intra-view or inter-view correlation. However, they fail to
consider the sparse reconstruction relationship and the discriminant corre-
lation inmulti-view data, simultaneously. In this paper, we propose a novel
multi-view feature extraction approach namedMulti-view Sparse Embed-
ding Analysis (MSEA). MSEA not only explores the sparse reconstruction
relationship that hides in multi-view data, but also considers discriminant
correlation bymaximizing the within-class correlation and simultaneously
minimizing the between-class correlation from intra-view. Moreover, we
add orthogonal constraints of embedding matrices to remove the redun-
dancy among views. To tackle the linearly inseparable problem in original
feature space, we further provide a kernelized extension of MSEA called
KMSEA. The experimental results on two datasets demonstrate the pro-
posed approaches outperform several state-of-the-art related methods.

Keywords: Sparse embedding analysis · Multi-view · Discriminant
correlation · Orthogonal constraints

1 Introduction

In computer vision domain, many applications are usually involved with differ-
ent views of data. With respect to feature extraction, multi-view features can
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well reveal the inherent property of data. Multi-view feature extraction aims
to exploit different characteristics or views of data, which is an attractive and
important research direction [1,2].

Existing supervised multi-view extraction methods can be roughly catego-
rized into two types. (1) Shared subspace learning based methods. They
focus on learning a common shared subspace, in which the correlation among
multiple views can be well revealed. Mostly they are based on canonical correla-
tion analysis (CCA) [3], which is a vital multi-view extraction technique, since it
can well utilize the inter-view correlation. Other shared subspace learning based
methods include discriminant analysis of canonical correlations (DCC) [4], mul-
tiple discriminant CCA (MDCCA) [5], multi-view discriminant analysis (MvDA)
[6], intra-view and inter-view supervised correlation analysis (I2SCA) [7], etc. (2)
Transfer learning and dictionary learning based methods. They focus
on incorporating the transfer learning or dictionary learning techniques into the
multi-view feature extraction process. Transfer learning can alleviate the distri-
bution differences among different views. And dictionary learning holds favor-
able reconstruction capability for multi-view features. Based on them, transfer
component analysis (TCA) [8] and uncorrelated multi-view fisher discrimination
dictionary learning (UMDDL) [9] are presented.

Although there exist much effort on multi-view extraction, existing methods
almost fail to preserve the sparse reconstruction relationship and simultaneously
consider the discriminant correlation in multi-view data. In this paper, we pro-
pose a novel multi-view feature extraction approach named Multi-view Sparse
Embedding Analysis (MSEA). The contributions are summarized as follows:

1. We incorporate the sparse embedding analysis and learn a shared dictio-
nary for multiple views, such that the sparse reconstruction relationship in
multi-view data can be well preserved. Moreover, we consider the discrimi-
native correlation by maximizing the within-class correlation and simultane-
ously minimizing the between-class correlation from intra-view. Since there
exist much redundancy in multi-view features, we add the orthogonal con-
straints into the objective function, such that the redundant information
among views can be effectively reduced.

2. We further provide a kernelized extension of MSEA, that is, KMSEA, to
tackle the linearly inseparable problem in the original feature space.

The rest of this paper is organized as follows. In Section 2, we briefly review
the related work. In Section 3, we describe the proposed MSEA approach and its
kernelized extension KMSEA. Experimental results and analysis are provided in
Section 4, and conclusion is drawn in Section 5.

2 Related Work

In this section, we briefly review the related methods, which are generally divided
into following two types.
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Shared subspace learning based methods mainly try to learn a common
shared subspace for multiple views. Discriminant analysis of canonical corre-
lations (DCC) [4] maximizes the within-class correlation and minimizes the
between-class correlation for two sets of variables. Multiple discriminant CCA
(MDCCA) [5] was designed for multiple views in the comparison with DCC. Kan
et al. [6] presented a Multi-view discriminant analysis (MvDA) method, which
maximizes between-class variations and minimizes within-class variations of the
learning common space from both intra-view and inter-view. Intra-view and
inter-view supervised correlation analysis (I2SCA) [7] simultaneously extracts
the discriminatingly correlated features from both inter-view and intra-view.

Transfer learning and dictionary learning based methods are mainly based
on the transfer learning and dictionary learning techniques. Transfer component
analysis (TCA) [8] attempts towards learning a few transfer components across
domains by using maximum mean miscrepancy strategy. In the subspace spanned
by these transfer components, data properties are preserved and data distribu-
tions in different domains are close to each other. Uncorrelated Multi-view Fisher
Discrimination Dictionary Learning (UMDDL) [9] learns the multiple structural
and discriminant dictionaries, which can well reconstruct the multi-view data.

3 Proposed Approach

3.1 Multi-view Sparse Embedding Analysis (MSEA)

Multi-view features can reveal the inherent property of data. Although these fea-
tures come from different views, there exist some useful latent shared informa-
tion, e.g., sparse structure, in the multi-view data [9]. How to effectively exploit
this kind of latent sparse structure is vital for improving the performance of
multi-view feature extraction. In this paper, we attempt towards incorporat-
ing the sparse embedding analysis into multi-view feature extraction. We learn
a shared dictionary and multiple embedding matrices, which can make inher-
ent sparse structure still be preserved in the projected multi-view features. The
scheme of our MSEA is illustrated in Fig. 1.

The entire objective function of our MSEA contains three parts: sparse
embedding analysis, intra-view discriminant correlation, and orthogonal con-
straints of embedding matrices. Then we describe these three parts in detail.

(1) Sparse Embedding Analysis. Let Yi denote the ith view of samples, and
assume that they have been normalized, that is, ŶiŶ

T
i = 1, i = 1, 2, ..., N , where

N is the number of view. We try to learn multiple embedding matrices, with
each corresponding to one view. The target is to project the original feature of
multi-view samples into a shared subspace and help learn the shared dictionary.
Then, this part of the objective function is defined as follows:

〈D,W,X〉 arg min
D,W,X

N∑

i=1

∥∥∥WiŶi − DX
∥∥∥
2

F

s.t. ‖xj‖0 ≤ T0, ∀j

, (1)
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Fig. 1. Illustration of the Scheme of MSEA.

where Wi is the ith embedding corresponding to the ith view. The dimensionality
of Wi is p × n, where n is the dimensionality of original samples feature and p is
the dimensionality of feature after embedding. D is the shared dictionary, and
X is the sparse representation coefficients.

(2) Intra-view Discriminant Correlation Maximization. Recently, some
study shows that the correlation information in views is significant in the feature
extraction [7],[9]. To make the extracted features hold favorable discriminability,
our MSEA tries to incorporate the intra-view discriminant correlation into the
objective function. This target is to maximize the within-class correlation and
minimize the between-class correlation from intra-view, simultaneously, that is,

〈W 〉 = arg max
Wi

N∑

i=1

(
Ci

)
. (2)

The discriminant correlation mentioned above can be defined as Ci =
Ci

w − βCi
b, where Ci

w is the intra-view within-class correlation and Ci
b is the

intra-view between-class correlation of the ith view. β > 0 is a tunable parame-
ter that indicates the relative significance of Ci

w versus Ci
b. Specifically, Ci

w and
Ci

b are defined as
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Ŷ T
i WT

i WiŶi
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where A = diag (En1 , En2 , ..., Enc
) denotes a n × n symmetric, positive semi-

definite, blocked diagonal matrix. Enk
is a nk × nk matrix with all elements

equalling to 1. Since A is a positive semi-definite matrix, we let A = HHT and
obtain a more brief representation of this part in objective function:

〈W 〉 = arg min
W̃

γ
∥∥∥W̃ Ỹ H

∥∥∥
2

F
, (3)

where γ =

⎛

⎝ n
c∑

p=1
n2
p

+ nβ

n2−
c∑

p=1
n2
p

⎞

⎠, W̃ = [W1, ...,WN ], Ỹ =

⎛

⎜⎝
Ŷ1 · · · 0
...

. . .
...

0 · · · ŶN

⎞

⎟⎠.

(3) Orthogonal Constraints of Embedding Matrices. Although multi-view
data reveal different characteristics of data, there also exist some redundant
information among those views describing the same object. Therefore, to remove
this kind of redundant information, we add the orthogonal constraints of above
learned embedding matrices, that is,

WiWi
T = I, i = 1, 2, ..., N. (4)

By combining the Formula (1), (3) and (4), the entire objective function of
our MSEA is defined as follows:

〈D,W,X〉 = arg min
D,W̃ ,X

∥∥∥W̃ Ỹ − DX
∥∥∥
2

F
− γ

∥∥∥W̃ Ỹ H
∥∥∥
2

F

s.t.WiWi
T = I, i = 1, 2, ..., N, and‖xj‖0 ≤ T0,∀j

. (5)

3.2 The Optimization of MSEA

There is no theoretical guarantee that our objective function in Formula (5)
is jointly convex to (D, W, X). However, it is convex with respect to each of
D, W, X when the others are fixed. Hence, this objective function can be solved
based on the idea of divide-and-conquer. Before we conduct the iterative solution
for MSEA, we try to simplify the optimization problem in Formula (5) by using
a optimization trick in the literature [15]. We introduce two matrices, Q ∈ n× p
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and B ∈ n× p, where n is the size of original samples feature and p is the size of
feature after embedding. Then, the embedding matrices Wi can be represented
by Wi = Qi

T Yi
T and the shared dictionary D can be represented by D =

W̃ Ỹ B. With this optimization trick and after some manipulations, the original
optimization problem in Formula (5) can be simplified as follows:

arg min
Q̃,X,B

∥∥∥Q̃T K − Q̃T KBX
∥∥∥
2

F
− γ

∥∥∥Q̃T KH
∥∥∥
2

F

s.t.Qi
T KiQi = I, i = 1, 2, ..., N, ‖xj‖0 ≤ T0,∀j

, (6)

where Ki = Ŷ T
i Ŷi, Q̃ = [Q1, ..., QN ], and K =

⎛

⎜⎝
K1 · · · 0
...

. . .
...

0 · · · KN

⎞

⎟⎠. The above For-

mula also can be tackled by the divide-and-conquer strategy. We divide the
objective function in Formula (6) into three sub-problems:

(1) Updating X. We update the sparse representation coefficients X by fixing
the matrix B and Q̃. The objective function can be simplified as follows:

〈X〉 = arg min
X

∥∥∥Q̃T K − Q̃T KBX
∥∥∥
2

F

s.t.‖xj‖0 ≤ T0,∀j
. (7)

This is a typical sparse representation problem, which has been effectively solved
by method of optimal directions (MOD) [10]. We directly utilize the MOD algo-
rithm to update X.

(2) Updating B. We update the matrix B by fixing X and Q̃. The objective
function can be simplified as follows:

〈B〉 = arg min
B

∥∥∥Q̃T K − Q̃T KBX
∥∥∥
2

F
. (8)

We let L (B) =
∥∥∥Q̃T K − Q̃T KBX

∥∥∥
2

F
, and take the derivative of L (B) with

respect to B. By setting the derivative result being equal to zero, we obtain:

B = XT
(
XXT

)−1
. (9)

(3) Updating Q̃. We update the matrix Q̃ by fixing X and B. First, we conduct
singular value decomposition (SVD) on K, and further let U = S

1
2 V T ((I −

BX)(I − BX)T − A)V S
1
2 , Gi = S

1
2 V T Qi. Then the objective function with

respect to matrix Q̃ can be reformulated as follows:

〈Gi〉 = arg min
G

tr
(
Gi

T UGi

)

s.t. Gi
T Gi = I

. (10)
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The matrices Gi can be solved by using the generalized eigen-value decomposi-
tion. The eigen-vectors of U are made up of the matrices Gi. Once we obtain
Gi, we can calculate the matrices Q based on Gi = S

1
2 V T Qi.

The entire optimization of our approach is summarized in Algorithm 1.

Algorithm 1. MSEA
Step 1: Randomly initialize the Q̃, B and X;
Step 2: while j < m (max iteration number) do:

2.1 Updating the matrix X in Formula (7)with MOD algorithm;
2.2 Updating the matrix B , by using the Formula (9);
2.3 Updating the matrix Q̃, by using Qi = V S− 1

2 Gi,
where Gi is the eigen-vectors of U in Formula (10);

Step 3: Output the sparse representation coefficients X, the embedding
matrices Wi = Qi

T Yi
T and the shared dictionary D = W̃ Ỹ B.

3.3 Classification Strategy of MSEA

Given the learned D, Wi, and X, we design an effective classification strategy
for MSEA. Specifically, we first project the testing samples into a novel feature
space by using the multi-view embedding matrices Wi. Then, we employ the
shared dictionary D to represent the projected features of samples, that is,

x = arg min
x

{
‖y − Dx‖22 +γ‖x‖1

}
,

where x is the sparse representation coefficients. We classify the testing samples
according to identity (y) = arg min

i
{ei}, where ei = ‖y − Diαi‖2 is the represen-

tation error of each class, and αi = [α1, α2, · · · , αc]
T is the sparse representation

coefficients of each class. We classify the testing samples into the class with the
smallest reconstruction error.

3.4 Kernelized MSEA

To tackle the linearly inseparable problem in the original feature space, we extend
a kernelized extension of MSEA called KMSEA by using kernel trick. Kernel trick
has shown its effectiveness in some methods [11, 12]. We first perform the kernel
mapping for samples and then realize the MSEA in the mapped space.

Assume that φ : Rd → F denotes a nonlinear mapping from the low-
dimensional feature space to high-dimensional feature space. Then the mapping
process from the sample set Y to space F can be represented as Y → φ (Y ). The
objective function of KMSEA is defined as

〈D,W,X〉 = arg min
D,W̃ ,X

∥∥∥W̃φ
(
Ỹ

)
− DX

∥∥∥
2

F
− γ

∥∥∥W̃φ
(
Ỹ

)
H

∥∥∥
2

F

s.t.WiWi
T = I, i = 1, 2, ..., N, and ‖xj‖ 0 ≤ T0,∀j

. (11)
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The optimization of KMSEA is similar to that of MSEA. We similarly intro-
duce two matrices, Q ∈ n × p and B ∈ n × p, and then the embedding matri-
ces Wi and shared dictionary D can be represented by Wi = Qi

T φ
(
Yi

T
)

and

D = W̃φ
(
Ỹ

)
B, respectively. Substituting Wi and D into the Formula (11),

we employ the kernel trick and then the objective function of KMSEA can be
reformulated as

arg min
D,W̃ ,X

∥∥∥Q̃T K̃ − Q̃T K̃BX
∥∥∥
2

F
− γ

∥∥∥Q̃T K̃H
∥∥∥
2

F

s.t.Qi
T K̃iQi = I, i = 1, 2, ..., N, and‖xj‖0 ≤ T0, ∀j

, (12)

where K̃i = φ
(
Ỹi

)T

φ
(
Ỹi

)
is the RBF kernel trick. K̃ =

⎛

⎜⎝
K̃1 · · · 0
...

. . .
...

0 · · · K̃N

⎞

⎟⎠, Q̃ =

[Q1, ..., QN ]. Similar to the MSEA, the KMSEA also can be solved by using the
divide-and-conquer strategy. Its optimization process is similar to Algorithm 1.

4 Experiments

In this section, we evaluate our two approaches MSEA and KMSEA. We
choose three state-of-the-art multi-view feature extraction methods, including
theTCA[8], UMDDL[9], and I2SCA [7], as the compared methods. We vali-
date the effectiveness of our approaches through two aspects: the mean recogni-
tion rate and the sample distribution figure.

The experiments are conducted on two widely-used multi-view datasets. Mul-
tiple feature dataset (MFD) [13] contains 10 classes of handwritten numerals.
These digit characters are represented in terms of six views of feature sets. In the
experiment, we randomly choose 100 samples per class as the training set and
the remaining 100 samples as the testing set. Multi-PIE dataset [14] contains
various views, illumination and expressions variations. We choose its subset con-
taining 1632 samples from 68 classes in 5 poses (C05, C07, C09, C27, C29). We
randomly select 5 samples per class as the training samples and the remaining
as the testing set.

Table 1 shows the average recognition rates and the standard deviation
of 20 random runs for all methods on MFD and Multi-PIE datasets. We can
observe that both MSEA and KMSEA outperform the compared methods on
two datasets. Moreover, KMSEA obtains better performance than MSEA.

Table 1. Average recognition rate (± standard deviation) on two datasets.

Datasets TCA UMMDL I2SCA MSEA KMSEA

MFD 91.87±3.67 92.07±4.67 92.11 ±3.97 92.22± 4.23 92.84±4.93
Multi-PIE 91.87±4.56 92.53±4.02 92.91±3.46 93.51±3.38 93.92±3.27
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In order to analyze the separabilities of all methods, we provide the distri-
bution of samples with two principal features extracted from 5 different views
by using all related methods on Multi-PIE dataset. Here, we employ the PCA
transform to obtain two principal features. Note that since UMDDL is a dictio-
nary learning method, not a feature extraction method, we cannot provide its
sample distribution figure.
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Fig. 2. Sample distributions of methods on Multi-PIE dataset of 20 samples in the
feature space. (a): TCA; (b): I2SCA; (c): MSEA; (d): KMSEA.

Fig. 2 shows the distribution of two principal features of 20 samples (from 5
different persons and 4 samples per person) extracted on the Multi-PIE dataset.
The markers with different shapes and colors stand for 5 different persons. It
shows that the proposed approaches achieve preferable separabilities in compar-
ison with other methods. As for the MFD dataset, we obtain the similar results.
Due to the limited space, we don’t provide the results in detail here.

5 Conclusion

In this paper, we propose a novel multi-view feature extraction approach named
MSEA. It not only can preserve the sparse reconstruction information, but also
can consider the discriminative correlation in multi-view data. To remove the
redundancy among views, we add orthogonal constraints of embedding matrices.
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Furthermore, we provide a kernelized extension KMSEA to tackle the linearly
inseparable problem. Experiments demonstrate that the MSEA and KMSEA
outperform several state-of-the-art related methods with respect to the recogni-
tion rate and separabilities on sample distribution figures.
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