
AISLE: Assessment of Provisioned Service
Levels in Public IaaS-Based Database Systems

Jörn Kuhlenkamp(B), Kevin Rudolph, and David Bermbach

Information Systems Engineering Research Group,
Technische Universität Berlin, Berlin, Germany

{jk,kr,db}@ise.tu-berlin.de

Abstract. When database systems running on top of public cloud ser-
vices run into performance problems, it is hard to identify the concrete
infrastructure service for which provisioning additional resources would
solve said performance problem. In this work, we present AISLE, which
develops a model for expected service levels and includes metrics which
assess values from service level monitoring to identify these cloud ser-
vices. Using AISLE, we develop such a model for the Amazon EBS ser-
vice and evaluate our approach in experiments with Apache Cassandra
running on top of EBS-backed EC2 instances.

Keywords: Cloud computing · IaaS · Service levels · Cloud monitoring

1 Introduction

Today’s database systems often run on top of IaaS cloud services where the
database administrator provisions the required amount of resources for each
underlying service. A systematic approach for identifying the required amount
is still missing today so that the administrator will typically provision resources
based on his gut feeling and adapt later on. Even if the database system is
already deployed and running and even if detailed monitoring data is available,
it is challenging to identify the specific cloud services where additional resources
should be provisioned. This is typically the case since cloud providers offer only
very limited Service Level Agreements (SLAs) so that it is hard to interpret
monitoring results.

Another problem is that not only the workloads, which the database system
is confronted with, change over time requiring adaption of provisioned resource
amounts but also the observable service levels of cloud services may vary over
time due to a lack of SLAs, e.g., [3].

In this work, we present AISLE (Assessing Infrastructure Service Level
Environments), an approach that develops a model for an Expected Service Level
(ESL) based on SLA information, documentation, and benchmarking results.
Part of this approach are three metrics which enable the database administra-
tor to easily assess whether the observed monitoring data for a specific service
quality is limited by this expected service level, thus, identifying cloud services
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 154–168, 2015.
DOI: 10.1007/978-3-662-48616-0 10

AISLE 155

where additional provisioned resources are likely to positively affect the database
system. We then use this approach to develop an ESL model for the Amazon
EBS service1 based on documentation and benchmarking. As an evaluation,
we deployed an Apache Cassandra cluster on EBS-backed EC22 instances and
verified experimentally that provisioning extra resources for the services identi-
fied by our metrics yields much better results than other more intuitive scaling
approaches.

The paper is structured as follows: Sect. 2 gives a brief introduction to selected
cloud services, systems and benchmarking tools. Section 3 describes AISLE, and
Sect. 4 presents our application of AISLE to the EBS service. In Sect. 5, we use
the model developed in Sect. 4 to evaluate our approach before discussing related
work (Sect. 6) and coming to a conclusion (Sect. 7).

2 Background

In this section, we will briefly introduce cloud services, systems, and tools which
we will refer to later.

Amazon Web Services: The Amazon EC2 service offers virtual machines
(EC2 instances). EC2 instances have an instance type which determines the
amount of resources, e.g., virtual CPU cores or memory, available to applica-
tions running on that instance. For disk storage, EC2 instances can use either
ephemeral disk or EBS volumes, instances of the Amazon EBS service. EBS
volumes come in different sizes and have a type (e.g., Provioned IOPS) which
determines the service level and the amount of dedicated bandwidth.

Apache Cassandra: Cassandra, a NoSQL system initially developed as a write-
efficient database for the Facebook message inbox [10], is maintained as Apache
project and widely used, e.g., by Netflix. Cassandra implements the Dynamo
replication architecture [7] and a BigTable-inspired schemaless data model and
storage engine [4].

Flexible I/O Tester: The Flexible I/O Tester (FIO)3 is a tool for studying disk
or network performance metrics on Linux systems. FIO works by synthetically
creating workloads based on a stochastic model and offers extensive configuration
options which makes it particularly suitable for our needs.

Yahoo! Cloud Serving Benchmark: The Yahoo! Cloud Serving Benchmark
(YCSB) [5] is an extensible, modular benchmarking tool which emulates clients
of a distributed database system and measures client-side performance metrics.
YCSB comes with a set of standard workloads of which we use workloads A and
B; A is a write-heavy (50 % read and 50 % update requests), B a read-heavy
(95 % reads and 5 % updates) workload. We use both workloads with a uniform
request distribution.
1 aws.amazon.com/ebs.
2 aws.amazon.com/ec2.
3 linux.die.net/man/1/fio.

http://www.aws.amazon.com/ebs
http://www.aws.amazon.com/ec2
http://linux.die.net/man/1/fio

156 J. Kuhlenkamp et al.

3 Assessing Cloud Service Levels

In this section, we describe AISLE, which transforms monitoring data into a
quality metric-independent score describing how close the specific metric is to
an ESL. As cloud providers give very few guarantees in SLAs, we first discuss
how a (potentially complex) model – describing service levels a cloud service user
could realistically observe – can be developed. Afterwards, we introduce three
metrics which describe how a given monitoring value ranks compared to said
model. These metrics can then be used to easily identify cloud services where
additional resources are likely to have a strong effect on the database system.

3.1 Deriving a Model for Expected Service Levels

Cloud providers rarely offer SLAs that characterize service levels a database
administrator can expect from the cloud service(s) the database is running on. If
any, these SLAs typically give very limited guarantees [2]. Beyond these explicitly
guaranteed service levels, additional information can be gained from documen-
tation or via infrastructure benchmarking – this information describes service
levels that are not guaranteed but which can still be realistically expected in
database deployments. Explicit SLAs will typically be very precise, guarantee-
ing concrete metric values, e.g., a compute service might guarantee a minimum
number of 1.5 Tera Flops per virtual machine. Implicit SLAs, in contrast, could
be based on large data sets describing relative frequencies of values measured,
e.g., EC2 instances would, based on [12], have a distribution function with two
peaks characterizing their computation power. Alternatively, a documentation-
based implicit SLA could require a relatively complex model, as we will see later
in this paper. In any case, a model for ESLs should describe relative frequencies
of service levels which can be expected when using that specific cloud service, i.e.,
an ESL is only for the most simplistic scenario a single value but will typically be
a distribution of values. Also, even the “best”4 value of an ESL is not necessarily
the “best” value which can be reached – positive outliers are always possible –
but it describes service levels that can be realistically reached in practice.

3.2 Normalizing Monitoring Data

For a given Observed Service Level (OSL), which can be obtained through run-
time monitoring, we would like to characterize how “close” this value is to the
ESL of the corresponding service quality. For quality-independent description
and analysis of this “closeness”, we propose to normalize service levels in a way
that assigns 100 % to observed service levels that reach exactly the ESL. We
call this normalized service level Service Level Pressure (SLP). Please, note that
SLP can reach values beyond 100 % whenever an observed service level exceeds
the ESL.

4 What “best” is, highly depends on the respective quality metric.

AISLE 157

The SLP for a given OSL o is defined as the ratio of o to the ESL. If the
ESL is a single value then SLP(o) is trivial to calculate (e.g., if ESL is 5 and o is
3, then SLP(o) is 60 %.). If the ESL is a discrete distribution assigning relative
frequencies f to service level values s, then the SLP is calculated as the weighted
sum of all ratios o/s, i.e.,

SLP (o) =
∑

∀s

o

s
∗ f (1)

As SLP values are likely to show a large variability over time and short
random spikes rarely have an influence on the database system, we propose to
introduce the concept of time into two new metrics which are built on top of
SLP: For a given time series of SLP values, we are interested in the periods of
time during which these SLP values exceed a threshold that the database admin-
istrator deems critical, e.g., 70 %. Specifically, we propose to use the following
two metrics to describe these critical pressure durations:

– Maximum Critical Pressure Time: MCPT(c) describes the longest period of
time during which the SLP values continuously exceeded the value c.

– Total Critical Pressure Time: TCPT(c) describes the total time that the SLP
values of the time series exceeded the value c. TCPT(c) is expressed as per-
centage of the length of the time series.

0%

50%

100%

150%

200%

250%

300%

0 50 100 150 200 250 300 350 400 450 500

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

Time [Seconds]

MCPT(95%) = 135s / 500s = 27%

TCPT(95%) = 318s / 500s = 64%

Critical SLP = 95%

Fig. 1. Maximum critical pressure time and total critical pressure time based on a
service level pressure threshold of 95 % for a 500 s interval.

Furthermore, beside using absolute values, we express both metrics as rela-
tive durations regarding the overall duration of the analyzed monitoring period
in percent. Figure 1 shows an example of MCPT and TCPT. High MCPT values

158 J. Kuhlenkamp et al.

imply a critical impact, e.g., caused by log consolidation [1] or online data migra-
tion [9], on the database system so that the amount of resources provisioned from
the corresponding cloud service should be reconsidered. High TCPT values, on
the other hand, are caused by the number of requests that the database receives,
i.e., they are a hint that indicates from which cloud services the database admin-
istrator should provision more resources if the additional load persists.

4 Expected Service Level Model

In this section, we present an ESL model for the Amazon EBS service to apply
AISLE to an infrastructure topology (topology) that includes EBS volumes. First,
we present an analytical ESL model based on the EBS documentation. Second,
we present results for an extended experimental evaluation of EBS, our exper-
imental toolkit FIOEBS and an resulting experimental ESL model. Third, we
discuss our results and compare analytical and experimental ESL models.

4.1 Analytical Expected Service Level Model

In implicit SLs, Amazon EBS gives throughput guarantees for volumes and con-
nections according to the documentation for the EBS API version 2015-03-01.
Precisely, volume throughput is quantified in (i) normalized operations per second
(no/s) and (ii) bandwidth per second (bw/s). Furthermore, connection through-
put is quantified in bw/s. A normalized operation (NO) no(o) describes an oper-
ation o that is issued against a volume as a function of the operation size in KiB
do. Therefore, a single operation is divided into a number of NOs based on a
normalized operation size ndo. If not stated otherwise, we assume a normalized
operation size of ndo = 256 KiB. Therefore, a single operation equals no NOs:
no(o) = �do/ndo�. For example, an operation o1 with request size do1 = 512 KiB
implies two NO.

An IO volume is provisioned with a configurable number of provisioned nor-
malized operations (PNO) per second pnoio = 0, . . . , 20000. The maximum num-
ber of configurable PNO depends on the configured volume size in GiB vsv of
a volume v: max pnoio(v) = 30 ∗ vsv. Furthermore, an IO volume provisions a
guaranteed bw/s pbwio: pbwio = 320 MiB/s.

EBS-optimized connections provide a dedicated guaranteed bw/s in MiB
pbwopt = 62.5, 93.75, 125, 250, 500 that depends on the instance type. Non EBS-
optimized connections do not provide any explicit performance SLs.

4.2 Experiment Setup

In this section, we present a subset of the benchmarking experiments we used
while trying to break and to extend the analytical performance model.

Infrastructure: We conduct all presented experiments in the same EC2 avail-
ability zone of eu-west-1 and use three different EC2 instance types in our

AISLE 159

experiments: t2.micro, t2.small, m3.medium. In the tests presented, we used
IO Volumes (io1) with sizes of 100 GiB and PNOs of 300, 900 and 1800.

Benchmarking: We use FIO in version 2.1.3 to generate workloads and collect
measurements. We deviate from the standard configuration with the following
parameters. We emulate synchronous requests, i.e., ioengine=sync, disable page
cache access, i.e., direct=1, refill buffers for operations, i.e., refill buffers=1,
and invalidate the buffer-cache, i.e., invalidate=1. We generate a synthetic data
set of up to 1 file and with a file size of 70 GiB. Before each experiment, we
execute a load phase in which we create file descriptors and write every block of
the complete dataset.

Workload: We use a Ramp Phase of 120 s in which no measurements are col-
lected to avoid skewed measurements during initialization. Afterwards, we exe-
cute a Run Phase for 120 s during which we collect measurements. We use a
single thread to issue operations with an operation size of 4, 32, 64, 256 or 1024
KiB. We issue operations with a random variation of the file offset between issued
operations. Furthermore, we use 5 workload mixes with different combinations
of read percentage (R) and write percentage (W): (i) R100/W0, (ii) R75/W25,
(iii) R50/W50 (iv) R25/W75 and R100/W0.

Measurements: We collect performance measurements with a granularity of 1 s
on the user-side, i.e., Iostat, and 1 min on the provider-side, i.e., CloudWatch.
Precisely, we measure throughput, i.e., average number of operations per second
(ops/s) and average bandwidth per second (bw/s) in KiB, and, latency, i.e.,
average per operation latency. Due to space restrictions, latency measurements
are not presented in this paper but included in the primary data set.

Implementation of the Experiment Toolkit: We designed and implemented
an extensible toolkit called AisleEbs5 to automate the setup of testbeds and
the execution of experiments. Furthermore, we want to foster reproducibility of
our experiments. AisleEbs allows to setup, execute and aggregate results for a
number of FIO experiments on Amazon EC2. We implemented AisleEbs based
on the configuration management system Ansible6. Figure 2 provides a concise
overview of the interactions of AisleEbs.

Experiments: Due to restricted space, we only include a subset of our experi-
ments and datasets. Within this paper, variable parameters in experiments are:
instance, instance type, PNOs, workload mix and operation size. The presented
results correspond to a total of 1125 experiments that are composed as follows:
1125 experiments = 3 (instance type) × 3 (PNOs) × 5 (operation size) × 5
(workload mix) × 5 (repetitions).

4.3 Experiment Results

Over all experiments, we do not see significant variations for the three parame-
ters instance, instance type and workload mix. Therefore, we present results for
5 github.com/jkuhlenkamp/aisle ebs.
6 ansible.com/home.

http://www.github.com/jkuhlenkamp/aisle_ebs
http://www.ansible.com/home

160 J. Kuhlenkamp et al.

Fig. 2. Overview on interactions within a AisleEbs experiment testbed.

different PNOs and record sizes, i.e., 75 experiments per boxplot. We encourage
the interested reader to analyze and/or reproduce our dataset that is available
with our toolkit implementation. Presented Boxplots show averages instead of
the medians, boxes present 25th and 75th percentils and whiskers 1st and 99th
percentils.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 3. Throughput for 100 GiB volume size and 300 PNOs.

300 Provisioned Normalized Operations. Figure 3 shows our results for
300 PNOs. Figure 3a shows an avg. throughput of 300 ops/s for operation sizes
up to 64 KiB with low variability. With increasing operation sizes avg. ops/s drop
down to a minimum of 60 ops/s for 1024 KiB. Figure 3b shows an proportional

AISLE 161

increase in avg. bw/s with increasing operation sizes up to 64 KiB with low
variability. For operation sizes of 256 KiB and 1024 KiB observed bw/s further
increases by a lower factor at large variability.

Our results indicate that up to an operation size of 64 KiB throughput is
limited by the number of PNOs. Furthermore, low variability indicates that
PNO-based SLs are enforced effectively with low provider-side over- and under-
provisioning. For request sizes of 256 KiB and 1024 KiB, our results indicate
that throughput is limited by available bw/s. Furthermore, increasing variability
indicates that bandwidth-based SLs are not enforced as strictly and/or effectively
as operation-based SLs. We argue that the decreasing variability of measured
ops/s for operation sizes of 1024 results from the fact that EBS enforces PNOs
based on normalized ops/s, and we measure not normalized ops/s as perceived
by FIOEBS.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 4. Throughput for 100 GiB volume size and 900 PNOs.

900 Provisioned Normalized Operations. Figure 4 shows our results for
900 PNOs. Figure 4a shows an avg. throughput of 916 and 871 ops/s with low
variability for operations sizes of 4 and 32 KiB. For larger operation sizes, we
measure a large decrease of avg. ops/s. Figure 4b shows that proportional band-
width increase stops and variability increases at operation sizes of 64 KiB. We
observe a maximum bandwidth of 139 MiB/s for operations sizes of 1024 KiB.
Our results indicate that up to a operation size of 32 KiB throughput is limited
by the number of PNOs and for large operation sizes by bandwidth.

1800 Provisioned Normalized Operations. Figure 5 shows our results for
1800 PNOs. Figure 5a shows an avg. throughput of 1788 ops/s for operations sizes
of 4 KiB. For larger operation sizes, avg. ops/s drop to 64 for 1024 KiB. Figure 5b
shows that proportional bandwidth increase stops and variability increases for
operation sizes larger than 4 KiB.

162 J. Kuhlenkamp et al.

0

500

1,000

1,500

2,000

2,500

 4 32 64 256 1,024

O
pe

ra
tio

ns
 [

#/
s]

Request Size [KiB]

(a) Operations per second

0

20

40

60

80

100

120

140

160

180

4 32 64 256 1024

B
an

dw
id

th
 [

M
iB

/s
]

Request Size [KiB]

(b) Bandwidth per second

Fig. 5. Throughput for 100 GiB volume size and 1800 PNOs.

Our results indicate that up to a operation size of 4 KiB throughput is
limited by the number of PNOs and for large operation sizes by bandwidth. In
comparison to 900 PNOs, absolute throughput and throughput variability does
not change significantly for operation sizes of 256 KiB and 1024 KiB.

4.4 Discussion

Our results indicate that an increase of PNOs for an volume does not increase
avg. bw/s but maximum bw/s for that volume. Furthermore, variability at maxi-
mum throughput increases with increasing absolute throughput. We observe the
highest throughput variability for the same PNOs at the turning points between
operation-based and bandwith-based throughput limitation. If not subject to an
operation-based limitation, we observe an avg. bw/s of 60 MiB for 256 KiB and
66 MiB for 1024 KiB, since indicating that t2.micro, t2.small and m3.medium
instances share similar instance to EBS connection limitations. We argue that
this observed behavior might change for other instance types and EBS-optimized
volume connections, respectively.

For EBS volumes with small numbers of PNOs under workloads with small
operation sizes, our results indicate that the analytical ESL model obtained from
the EBS documentation predicts ESLs with high accuracy. However, for larger
operation sizes and PNOs the accuracy of the analytical model quickly decreases.
Overall, we argue that the documentation of ESLs without experimental evalu-
ation is not sufficient to serve as an accurate information base for infrastructure
optimization decisions. Experimental evaluation of public infrastructure services
increases the overhead for applying AISLE. However, we argue that experimen-
tal ESL models can be reused for the evaluation of different deployments and
shared between different IaaS users.

Next, we apply AISLE based on the obtained ESL model for EBS in an
evaluation and optimization of a Cassandra deployment on EC2.

AISLE 163

5 Use Case: Cassandra

In this section, we apply our method and obtained ESL model to a Cassandra
deployment on two topologies.

5.1 Deployment Enviroment

We deployed Cassandra clusters with standard configuration parameters and no
replication.

Infrastructure: For each experiemnt, we provision a 3-node topology of either
m3.large or m3.medium EC2 instances, all in the same availability zone of the
eu-west-1 region. Both instance types provide moderate networking performance
and are not EBS-optimized. We attached a single 100 GiB IO volume with 300
PNOs to each instance.

Workload: As a load generator, we deployed YCSB on a single m3.large instance
to emulate 100 client threads running for 30 min. Furthermore, we use for both
setups m3.large and m3.medium initial datasets that exceed each instance’s
memory almost by a factor three. We emulate YCSB standard workloads A
and B.

Toolkit and Measurements: We implemented the tool AisleCassandra7 to
automate experiment execution. We use Amazon CloudWatch8 to obtain
provider-side and Iostat9 to obtain user-side monitoring measurements.

5.2 AISLE Application

We apply AISLE within our two topology setups under workloads A and B. First,
we conduct an a priori analysis of the initial topologies. Second, we adjust the
initial topologies and conduct a second a posteriori analysis. For both analyses,
we present boxplots of SLP for ops/s (Pop) and SLP for bw/s (Pbw).

300 Provisioned Normalized Operations. Figure 6 shows our results for
setups m3.medium and m3.large for workload A and workload B. For both setups
and workloads, our results show a high Pop compared to a low Pbw. m3.large
under both workloads and m3.medium under workload B show a Pop above
80 % on avg. and 92 % for the 75th percentile for all volumes except volume
1 in m3.medium. Since, indicating underprovisioned SLs regarding ops/s SLs.
m3.medium under workload A shows 99th percentile Pop of less than 85 % for
volume 1 and 3, since, results indicate small potential for optimization for both
volumes. We adjust the volumes in both setups regarding ops/s SLs. Precisely,
we increase PNOs from 300 to 1800 for all IO volumes.

7 github.com/jkuhlenkamp/aisle cassandra.
8 aws.amazon.com/cloudwatch/.
9 linux.die.net/man/1/iostat.

http://www.github.com/jkuhlenkamp/aisle_cassandra
http://www.aws.amazon.com/cloudwatch/
http://www.linux.die.net/man/1/iostat

164 J. Kuhlenkamp et al.

0%

50%

100%

150%

200%

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

m3.large m3.medium
wl A

vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3

wl B
m3.large m3.medium

Fig. 6. Boxplots of Service Level Pressures for (i) ops/s and (ii) bw/s for EBS volumes
in 3 node clusters and 300 Provisioned Normalized Operations.

1800 Provisioned Normalized Operations. Figure 7 shows our results for
the adjusted setups m3.medium and m3.large for workload A and workload
B. For both workloads and adjusted setups, our results show a shift from a
high Pop to high Pbw in comparision to the inital setups. For both workloads,
all volumes in m3.large report 25th percentile Pbw above 89 %. Therefore, our
results indicate underprovisioned SLs regarding bw/s. For both workloads, all
volumes in m3.medium report 99th percentile values for Pop and Pbw of less than
71 %. Therefore, indicating overprovisioned volumes regarding both SLs.

0%

50%

100%

150%

200%

Se
rv

ic
e

L
ev

el
 P

re
ss

ur
e

m3.large m3.medium
wl A

vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3 vol1 vol2 vol3

wl B
m3.large m3.medium

Fig. 7. Boxplots of Service Level Pressures for (i) ops/s and (ii) bw/s for EBS volumes
in 3 node clusters and 1800 Provisioned Normalized Operations.

AISLE 165

5.3 Discussion

We showed that AISLE is suitable to characterize the optimization potential
regarding SLs of public IaaS-based topologies. However, we are aware that our
approach might imply a certain implementation and management overhead in
comparison to a trial and error-based scale-out strategy. The overhead is due to
obtaining ESL models, the setup of monitoring infrastructure and conducting
analysis. Therefore, we compare AISLE to a scale-out strategy. Furthermore, we
discuss the adoption of provider-side monitoring solutions to decrease required
management overheads for monitoring solutions.

AISLE vs. Scale-Out. The application of AISLE implies an additional man-
agement overhead for a user of an infrastructure service. Therefore, we compare
AISLE to a trivial scale-out strategy, i.e., the provisioning of additional servers
with the same configuration into an existing cluster. We refer to AISLE-based
scaling as Option A (Experimental) and scale-out-based scaling as Option B
(Analytical). We compare both approaches in terms of application SLs for the
Cassandra cluster using a ratio for simpler comparison. Precisely, the ratio con-
sists of the overall topology cost in $ per month divided by Cassandra through-
put, i.e. avgerage client requests per second (req/s). For Option B, we assume a
linear increase in throughput as indicated by previous research [9,14]. Further-
more, we select the corresponding cluster size for Option B as follows: We select
the highest resulting throughput that is lower than the corresponding through-
put for Option A. Table 1 shows a concise comparison between Option A and
Option B. As shown in column Opt. A - Opt. B and indicated by negative com-
parison values, a AISLE-based scaling strategy results in a higher scaleup under
lower costs per month for all workloads (wl A and wl B) and instances types
and, as expected, a higher benefit for m3.large.

Table 1. Performance and costs comparison for scaling an initial Cassandra cluster
(Base) with scaling strategy AISLE (Opt.A) vs. horizontal scale-out (Opt.B).

Opt. A (Experimental) Opt. B (Analytical) Opt. A - Opt. B

PIOPS = 1,800 PIOPS = 300 Savings

#nodes $/(req/s) #nodes $/(req/s) $/(req/s)

m3.large, wl A
(update-
heavy)

3 0.08 14 0.22 −0.14

m3.large, wl B
(read-heavy)

3 0.13 13 0.33 −0.20

m3.medium, wl A
(update-
heavy)

3 0.11 7 0.13 −0.02

m3.medium, wl B
(read-heavy)

3 0.19 7 0.23 −0.04

166 J. Kuhlenkamp et al.

Provider-Side vs. Client-Side Monitoring. AISLE requires monitoring of
infrastructure resources. Therefore, we compare two common options that are
available to a user to enable a monitoring solution: (i) client-side monitoring, i.e.,
Iostat, and (ii) provider-side monitoring, i.e., Amazon CloudWatch. Client-side
monitoring implies a management and performance overhead. Still, client-side
monitoring implies the freedom to adapt and verify monitored metrics and gran-
ularity. Provider-side monitoring implies a low management and performance
overhead. However, users have limited control over the monitoring solution and
must trust a provider.

Next, we apply AISLE with monitoring traces obtained from Amazon Cloud-
Watch. According to the latest CloudWatch documentation, i.e., API version
2010-08-01, CloudWatch provides a metric VolumeConsumedReadWriteOps that
reports no/s based on a normalized operation size of 256 KiB with 1 min gran-
ularity. Figure 8 shows no/s reported by CloudWatch and Iostat for a single
volume. Our measurements indicate that CloudWatch reports much higher no/s
for the same 1 min interval. We further analyzed this behavior. We believe that
CloudWatch reports no/s based on a normalized operation size of 16 KiB instead
of 256 KiB. Therefore, we derived no/s for normalized operation size of 16 KiB for
Iostat measurements. Figure 8 shows the derived scaling factor and the resulting
no/s model for a normalized operation size of 16 KiB for Iostat. Visual analysis
indicates that this is indeed the case.

0

3

6

9

12

15

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sc
al

e
Fa

ct
or

O
ve

ra
ll

O
pe

ra
tio

ns
 [#

/m
in

ut
e]

Time [Minutes]

Monitored Provider-side Operations Analytical Client-side Operations (base 16KiB)

Monitored Client-side Operations Analytical Client-side Scale Factor (base 16KiB)

Fig. 8. Comparison of client-side (Iostat) and provider-side (CloudWatch) throughput
measurements for different normalized operation sizes.

6 Related Work

There is no directly related approach with the same scope as AISLE. Existing
publications fall in either of the following three groups:

AISLE 167

Infrastructure Optimization: Several autonomous computing approaches
adapt provisioned resources at runtime for database systems, e.g., [6,13,17].
In contrast to AISLE, these approaches all require explicit knowledge on the
implementation details of the database systems whereas AISLE is theoretically
application-agnostic – even though only evaluated for database systems – and
treats the system as a blackbox. As AISLE in its current version does not adapt
provisioned resources but rather provides the necessary information to do so to
an administrator, these approaches complement our work.

Provider Perspective: Approaches like [16,18] take a provider perspective
and focus, e.g., on offering optimal physical resource sets to virtual machines
depending on the runtime requirements of the virtual machine. AISLE, in con-
trast, takes the perspective of a client who does not have any influence and
knowledge on the service internals.

Infrastructure Benchmarking: Performance benchmarking of infrastructure
services like Amazon EBS has been done before, e.g., [8,11,15]. We introduce
new metrics to not only measure but also interpret results. For the special case
of Amazon EBS, we also ran our experiments in more configuration setups and
could, thus, also observe more fine-grained results: For instance, our experiments
indicate low bandwidth variability for a certain combinations of EBS volume
configurations and operation sizes whereas [11] reported overall high bandwidth
variability.

7 Conclusion

In this work, we presented AISLE, an approach that develops a model for an
Expected Service Level based on SLA information, documentation, and bench-
marking results. Part of this approach are three metrics which enable the data-
base administrator to easily assess whether the observed monitoring data for a
specific service quality is limited by this expected service level, thus, identify-
ing cloud services where additional provisioned resources are likely to positively
affect the database system. As an example, we have based on AISLE developed
an ESL node for the Amazon EBS service and verified experimentally that pro-
visioning extra resources for the services identified by our metrics yields much
better results than other more intuitive scaling approaches. We believe that our
approach is not limited to database systems and will, therefore, in future work
try to extend it to all kinds of applications running on top of cloud services.

Acknowledgments. We thank Amazon Web Services for a generous grant that
enabled us to run our experiments.

References

1. Ahmad, M.Y., Kemme, B.: Compaction management in distributed key-value data-
stores. PVLDB 8(8), 850–861 (2015)

168 J. Kuhlenkamp et al.

2. Baset, S.A.: Cloud SLAs. ACM SIGOPS Operating Syst. Rev. 46(2), 57 (2012)
3. Bermbach, D., Tai, S.: Benchmarking eventual consistency: Lessons learned from

long-term experimental studies. In: Proceedings of the 2nd International Confer-
ence on Cloud Engineering (IC2E). IEEE (2014)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008)

5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing

6. Copil, G., Trihinas, D., Truong, H.-L., Moldovan, D., Pallis, G., Dustdar, S.,
Dikaiakos, M.: ADVISE – a framework for evaluating cloud service elasticity behav-
ior. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 275–290. Springer, Heidelberg (2014)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of 21st ACM SIGOPS Symposium on Oper-
ating Systems Principles

8. Dittrich, J., Quian, J.A.: Runtime measurements in the cloud: observing, analyzing,
and reducing variance. Proc. VLDB Endow. 3(1), 460–471 (2010)

9. Kuhlenkamp, J., Klems, M., Röss, O.: Benchmarking scalability and elasticity of
distributed database systems. Proc. VLDB Endow. 7(12), 1219–1230 (2014)

10. Lakshman, A., Malik, P.: Cassandra. ACM SIGOPS Operating Syst. Rev. 44(2),
35–40 (2010)

11. Leitner, P., Cito, J.: Patterns in the chaos a study of performance variation and
predictability in public IaaS clouds. In: Proceedings of the 24th International World
Wide Web Conference (WWW 2015). ACM, Florence (2015)

12. Lenk, A., Menzel, M., Lipsky, J., Tai, S., Offermann, P.: What are you paying for?
performance benchmarking for infrastructure-as-a-service offerings. In: 2011 IEEE
International Conference on Cloud Computing (CLOUD), pp. 484–491 (2011)

13. Lim, H.C., Babu, S., Chase, J., Parekh, S.: Automated control in cloud computing:
challenges and opportunities. In: Proceedings of the 1st Workshop on Automated
Control for Datacenters and Clouds, pp. 13–18 (2009)

14. Rabl, T., Sadoghi, M., Jacobsen, H.A., Gómez-Villamor, S., Muntés-Mulero, V.,
Mankowskii, S.: Solving big data challenges for enterprise application performance
management. Proc. VLDB Endow. 5(12), 1724–1735 (2012)

15. Scheuner, J., Leitner, P., Cito, J., Gall, H.: Cloud WorkBench - infrastructure-
as-code based cloud benchmarking. In: Proceedings of the 6th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2014) (2014)

16. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: CloudScale. In: Proceedings of the 2nd
ACM Symposium on Cloud Computing - SOCC 2011, pp. 1–14 (2011)

17. Trushkowsky, B., Fox, A., Franklin, M.: The scads director: Scaling a distributed
storage system under stringent performance requirements. In: Proceedings of the
9th USENIX Conference on File and Storage Technologies (FAST 2011), pp. 12–25.
USENIX Association, Berkeley (2011)

18. Yao, J., Jung, G.: Bottleneck detection and solution recommendation for cloud-
based multi-tier application. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S.
(eds.) ICSOC 2014. LNCS, vol. 8831, pp. 470–477. Springer, Heidelberg (2014)

	AISLE: Assessment of Provisioned Service Levels in Public IaaS-Based Database Systems
	1 Introduction
	2 Background
	3 Assessing Cloud Service Levels
	3.1 Deriving a Model for Expected Service Levels
	3.2 Normalizing Monitoring Data

	4 Expected Service Level Model
	4.1 Analytical Expected Service Level Model
	4.2 Experiment Setup
	4.3 Experiment Results
	4.4 Discussion

	5 Use Case: Cassandra
	5.1 Deployment Enviroment
	5.2 AISLE Application
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

