Skip to main content

Efficient Image Processing System for an Industrial Machine Learning Task

  • Conference paper
  • First Online:
Machine Learning for Cyber Physical Systems

Part of the book series: Technologien für die intelligente Automation ((TIA))

  • 1435 Accesses

Abstract

We present the concept of a perceptive motor in terms of a cyber-physical system (CPS). A model application monitoring a knitting process was developed, where the take-off of the produced fabric is controlled by an electric motor. The idea is to equip a synchronous motor with a smart camera and appropriate image processing hard- and software components. Subsequently, the characteristics of knitted fabric are analysed by machine-learning (ML) methods. Our concept includes motor-current analysis and image processing. The aim is to implement an assistance system for the industrial large circular knitting process. An assistance system will help to shorten the retrofitting process. The concept is based on a low cost hardware approach for a smart camera, and stems from the recent development of image processing applications for mobile devices [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Hildebrand, J. L. Hoffmann, E. Gillich, H. Dörksen, and V. Lohweg, Smartphones as Smart Cameras - Is It Possible? Lemgo, Germany: inIT – Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2012.

    Google Scholar 

  2. V. Lohweg, J. L. Hoffmann, H. Dörksen, R. Hildebrand, E. Gillich, J. Hofmann, and J. Schaede, Banknote Authentication with Mobile Devices. Lemgo, Germany and Lausanne, Switzerland: inIT - Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2013.

    Google Scholar 

  3. K.-T. Cheng and Y.-C. Wang, Using Mobile GPU for General-Purpose Computing - A Case Study of Face Recognition on Smartphones. University of California, Santa Barbara, CA, USA, 2011.

    Google Scholar 

  4. C.-Y. Fang, W.-H. Hsu, C.-W. Ma, and S.-W. Chen, A Vision-based Safety Driver Assistance System for Motorcycles on a Smartphone. 2014.

    Google Scholar 

  5. DIN, Textilen. Grundbegriffe. Berlin: Beuth-Vertrieb GmbH, 1969.

    Google Scholar 

  6. K. P. Weber, ;. Frankfurt am Main: Deutscher Fachverlag GmbH, 2004.

    Google Scholar 

  7. M. Bator, A. Dicks, U. Mönks, and V. Lohweg, Feature Extraction and Reduction Applied to Sensorless Drive Diagnosis. Lemgo, Germany: inIT - Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2012.

    Google Scholar 

  8. H. Dörksen, U. Mönks, and V. Lohweg, “Fast classification in industrial Big Data environments,” in Emerging Technology and Factory Automation (ETFA), 2014 IEEE, pp. 1–7, 2014.

    Google Scholar 

  9. H. Dörksen and V. Lohweg, “Automated Fuzzy Classification with Combinatorial Refinement,” in Emerging Technology and Factory Automation (ETFA), 2015 IEEE, 2015.

    Google Scholar 

  10. B. Neumann, Bildverarbeitung für Einsteiger: Programmbeispiele mit Mathcad. Berlin Heidelberg: Springer, 1 ed., 2005.

    Google Scholar 

  11. A. Kumar, Computer Vision-based Fabric Defect Detection: A Survey. New Delhi, India: IEEE Xplore, 2008.

    Google Scholar 

  12. K. D. Tönnies, Grundlagen der Bildverarbeitung. M¨unchen: Pearson Studium, 1 ed., 2005.

    Google Scholar 

  13. W. Burger and M. J. Burge, Digitale Bildverarbeitung;. Berlin Heidelberg: Springer, 1 ed., 2005.

    Google Scholar 

  14. N. Otsu, A Threshold Selection Method from Gray-Level Histogramms. Tokyo, Japan: IEEE Xplore, 1979.

    Google Scholar 

  15. I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2006.

    Google Scholar 

  16. E. Alpaydin, Introduction to Machine Learning. Cambridge, Massachusetts - London, England: The MIT Press, 2 ed., 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vukovic, K., Simonis, K., Dörksen, H., Lohweg, V. (2016). Efficient Image Processing System for an Industrial Machine Learning Task. In: Niggemann, O., Beyerer, J. (eds) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48838-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48838-6_8

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48836-2

  • Online ISBN: 978-3-662-48838-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics