Abstract
We present the concept of a perceptive motor in terms of a cyber-physical system (CPS). A model application monitoring a knitting process was developed, where the take-off of the produced fabric is controlled by an electric motor. The idea is to equip a synchronous motor with a smart camera and appropriate image processing hard- and software components. Subsequently, the characteristics of knitted fabric are analysed by machine-learning (ML) methods. Our concept includes motor-current analysis and image processing. The aim is to implement an assistance system for the industrial large circular knitting process. An assistance system will help to shorten the retrofitting process. The concept is based on a low cost hardware approach for a smart camera, and stems from the recent development of image processing applications for mobile devices [1–4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Hildebrand, J. L. Hoffmann, E. Gillich, H. Dörksen, and V. Lohweg, Smartphones as Smart Cameras - Is It Possible? Lemgo, Germany: inIT – Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2012.
V. Lohweg, J. L. Hoffmann, H. Dörksen, R. Hildebrand, E. Gillich, J. Hofmann, and J. Schaede, Banknote Authentication with Mobile Devices. Lemgo, Germany and Lausanne, Switzerland: inIT - Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2013.
K.-T. Cheng and Y.-C. Wang, Using Mobile GPU for General-Purpose Computing - A Case Study of Face Recognition on Smartphones. University of California, Santa Barbara, CA, USA, 2011.
C.-Y. Fang, W.-H. Hsu, C.-W. Ma, and S.-W. Chen, A Vision-based Safety Driver Assistance System for Motorcycles on a Smartphone. 2014.
DIN, Textilen. Grundbegriffe. Berlin: Beuth-Vertrieb GmbH, 1969.
K. P. Weber, ;. Frankfurt am Main: Deutscher Fachverlag GmbH, 2004.
M. Bator, A. Dicks, U. Mönks, and V. Lohweg, Feature Extraction and Reduction Applied to Sensorless Drive Diagnosis. Lemgo, Germany: inIT - Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, 2012.
H. Dörksen, U. Mönks, and V. Lohweg, “Fast classification in industrial Big Data environments,” in Emerging Technology and Factory Automation (ETFA), 2014 IEEE, pp. 1–7, 2014.
H. Dörksen and V. Lohweg, “Automated Fuzzy Classification with Combinatorial Refinement,” in Emerging Technology and Factory Automation (ETFA), 2015 IEEE, 2015.
B. Neumann, Bildverarbeitung für Einsteiger: Programmbeispiele mit Mathcad. Berlin Heidelberg: Springer, 1 ed., 2005.
A. Kumar, Computer Vision-based Fabric Defect Detection: A Survey. New Delhi, India: IEEE Xplore, 2008.
K. D. Tönnies, Grundlagen der Bildverarbeitung. M¨unchen: Pearson Studium, 1 ed., 2005.
W. Burger and M. J. Burge, Digitale Bildverarbeitung;. Berlin Heidelberg: Springer, 1 ed., 2005.
N. Otsu, A Threshold Selection Method from Gray-Level Histogramms. Tokyo, Japan: IEEE Xplore, 1979.
I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2006.
E. Alpaydin, Introduction to Machine Learning. Cambridge, Massachusetts - London, England: The MIT Press, 2 ed., 2010.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vukovic, K., Simonis, K., Dörksen, H., Lohweg, V. (2016). Efficient Image Processing System for an Industrial Machine Learning Task. In: Niggemann, O., Beyerer, J. (eds) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48838-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-48838-6_8
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-48836-2
Online ISBN: 978-3-662-48838-6
eBook Packages: EngineeringEngineering (R0)