Abstract
We present synchronized recursive timed automata (SRTA) that extend timed automata with a stack. Each frame of a stack is composed of rational-valued clocks, and SRTA synchronously increase the values of all the clocks within the stack. Our main contribution is to show that the reachability problem of SRTA is ExpTime-complete. This decidability contrasts with the undecidability for recursive timed automata (RTA) introduced by Trivedi and Wojtczak, and Benerecetti et al. Unlike SRTA, the frames below the top are frozen during the computation at the top frame in RTA.
Our construction of the decidability proof is based on the region abstraction for dense timed pushdown automata (TPDA) of Abdulla et al. to accommodate together diagonal constraints and fractional constraints of SRTA. Since SRTA can be seen as an extension of TPDA with diagonal and fractional constraints, our result enlarges the decidable class of pushdown-extensions of timed automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulla, P., Atig, M., Stenman, J.: Dense-timed pushdown automata. In: LICS 2012, pp. 35–44. IEEE (2012)
Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state machines. In: TIME, pp. 61–68. IEEE (2010)
Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundam. Inf. 36(2), 145–182 (1998)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, j (eds.) CONCUR ’97: Concurrency Theory. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. TCS 321(2–3), 291–345 (2004)
Büchi, J.: Regular canonical systems. Arch. Math. Logik Grundlag 6, 91–111 (1964)
Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: LICS 2015, pp. 738–749. IEEE (2015)
Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. In: INFINITY 1997, pp. 27–37. Elsevier (1997)
Krishna, S., Manasa, L., Trivedi, A.: What’s decidable about recursive hybrid automata? In: HSCC 2015, pp. 31–40. ACM (2015)
Lynch, N., Vaandrager, F.: Forward and backward simulations. Inf. Comp. 121(2), 214–233 (1995)
Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010)
Uezato, Y., Minamide, Y.: Synchronized recursive timed automata (2015). http://score.cs.tsukuba.ac.jp/~uezato/SRTA.pdf
Acknowledgement
This work was supported by JSPS KAKENHI Grant Number 15J01843 and 15K00087.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uezato, Y., Minamide, Y. (2015). Synchronized Recursive Timed Automata. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-48899-7_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48898-0
Online ISBN: 978-3-662-48899-7
eBook Packages: Computer ScienceComputer Science (R0)