Skip to main content

On Subexponentials, Synthetic Connectives, and Multi-level Delimited Control

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Included in the following conference series:

  • 818 Accesses

Abstract

We construct a partially-ordered hierarchy of delimited control operators similar to those of the CPS hierarchy of Danvy and Filinski [5]. However, instead of relying on nested CPS translations, these operators are directly interpreted in linear logic extended with subexponentials (i.e., multiple pairs of ! and ?). We construct an independent proof theory for a fragment of this logic based on the principle of focusing. It is then shown that the new constraints placed on the permutation of cuts correspond to multiple levels of delimited control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Adding second-order quantifiers will, however, encounter problems similar to those found in polarized settings: how can one enforce the index restrictions on the bound variable when they are instantiated. First-order \(\forall \) can be represented by \(!_i?_{i'}\forall x.!_k?_{k'}A\) where \(i'\le k'\) and \(k\le i\). These restrictions guarantee \(?_{i'}\forall x.?_{k'} A ~\equiv ~ \forall x.?_{k'}A\) and \(!_i\forall x. !_k A ~\equiv ~ !_i \forall x.A\).

  2. 2.

    When restricted to the modalities \(!_i?_{i'}\) and \(?_{i'}!_i?_{i'}\), dereliction can be expressed by the axiom \(!A\rightarrow A\): this is an intuitionistic implication, which surely has proof \(\lambda x.x\).

References

  1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ariola, Z.M., Herbelin, H., Sabry, A.: A type-theoretic foundation of delimited continuations. High. Order Symbolic Comput. 22(3), 233–273 (2009)

    Article  MATH  Google Scholar 

  3. Danos, V., Joinet, J.-B., Schellinx, H.: LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 211–224. Cambridge University Press, Cambridge (1995)

    Chapter  Google Scholar 

  4. Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: uncovering the dynamics of linear logic proofs. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Kurt Gödel Colloquium. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993)

    Google Scholar 

  5. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Programming, pp. 151–160 (1990)

    Google Scholar 

  6. Felleisen, M.: The theory and practice of first-class prompts. In: 15th ACM Symposium on Principles of Programming Languages, pp. 180–190. ACM, New York (1988)

    Google Scholar 

  7. Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Comput. Sci. 1, 255–296 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griffin, T.: The formulae-as-types notion of control. In: 17th Annual ACM Symposium on Principles of Programming Languages, pp. 47–57 (1990)

    Google Scholar 

  9. Ilik, D.: Delimited control operators prove double-negation shift. Ann. Pure Appl. Logic 163(11), 1549–1559 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kameyama, Y.: Axioms for delimited continuations in the CPS hierarchy. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 442–457. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kameyama, Y., Yonezawa, T.: Typed dynamic control operators for delimited continuations. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 239–254. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liang, C., Miller, D.: On subexponentials, synthetic connectives, and multi-level delimited control - long version (2015). Unpublished manuscript available online at http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/subdelim-long.pdf

  14. Materzok, M., Biernacki, D.: A dynamic interpretation of the CPS hierarchy. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 296–311. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In: ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 129–140 (2009)

    Google Scholar 

  16. Ong, C.H.L., Stewart, C.: A Curry-Howard foundation for functional computation with control. In: Symposium on Principles of Programming Languages, pp. 215–227 (1997)

    Google Scholar 

  17. Parigot, M.: \(\lambda \mu \)-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  18. Saurin, A.: A hierarchy for delimited continuations in call-by-name. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 374–388. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the reviewers of this paper for their comments, and to Danko Ilik for valuable discussion. This work was funded by the ERC Advanced Grant ProofCert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, C., Miller, D. (2015). On Subexponentials, Synthetic Connectives, and Multi-level Delimited Control. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics