Abstract
We propose a notion of focusing for nested sequent calculi for modal logics which brings down the complexity of proof search to that of the corresponding sequent calculi. The resulting systems are amenable to specifications in linear logic. Examples include modal logic \(\mathsf {K}\), a simply dependent bimodal logic and the standard non-normal modal logics. As byproduct we obtain the first nested sequent calculi for the considered non-normal modal logics.
B. Lellmann—Funded by the EU under Marie Skłodowska-Curie grant agreement No. 660047.
E. Pimentel—Funded by CNPq.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992)
Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)
Chaudhuri, K., Guenot, N., Straßburger, L.: The focused calculus of structures. In: Bezem, M. (ed.) CSL 2011, pp. 159–173. Leibniz International Proceedings in Informatics (2011)
Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)
Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 190–204. Springer, Heidelberg (2000)
Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. In: AiML, vol. 9, pp. 279–299 (2012)
Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001)
Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak modal systems. Studia Logica 65, 121–145 (2000)
Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Heidelberg (2015)
Lellmann, B., Pattinson, D.: Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic. In: Lodaya, K. (ed.) ICLA 2013. LNCS (LNAI), vol. 7750, pp. 148–160. Springer, Heidelberg (2013)
Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Appl. Logic 58, 229–246 (1992)
Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput. (IANDC) 209, 1465–1490 (2011)
Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theor. Comput. Sci. 474, 98–116 (2013)
Negri, S., van Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem. Cambridge University Press, Cambridge (2011)
Nigam, V., Miller, D.: A framework for proof systems. J. Autom. Reasoning 45(2), 157–188 (2010)
Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about proof systems. J. Logic Comput. (2014). doi:10.1093/logcom/exu029, http://logcom.oxfordjournals.org/content/early/2014/06/06/logcom.exu029.abstract
Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, vol. 28, pp. 31–51. Springer, Heidelberg (2009)
Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lellmann, B., Pimentel, E. (2015). Proof Search in Nested Sequent Calculi. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-662-48899-7_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48898-0
Online ISBN: 978-3-662-48899-7
eBook Packages: Computer ScienceComputer Science (R0)