Skip to main content

The Benefit of Recombination in Noisy Evolutionary Search

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

Practical optimization problems frequently include uncertainty about the quality measure, for example due to noisy evaluations. Thus, they do not allow for a straightforward application of traditional optimization techniques. In these settings meta-heuristics are a popular choice for deriving good optimization algorithms, most notably evolutionary algorithms which mimic evolution in nature. Empirical evidence suggests that genetic recombination is useful in uncertain environments because it can stabilize a noisy fitness signal. With this paper we want to support this claim with mathematical rigor.

The setting we consider is that of noisy optimization. We study a simple noisy fitness function that is derived by adding Gaussian noise to a monotone function. First, we show that a classical evolutionary algorithm that does not employ sexual recombination (the \(( \mu +1) \)-EA) cannot handle the noise efficiently, regardless of the population size. Then we show that an evolutionary algorithm which does employ sexual recombination (the Compact Genetic Algorithm, short: cGA) can handle the noise using a graceful scaling of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd., Bristol (1997)

    MATH  Google Scholar 

  2. Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doerr, B., Winzen, C.: Playing mastermind with constant-size memory. In: Proceedings of STACS 2012, pp. 441–452 (2012)

    Google Scholar 

  5. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theor. Comput. Sci. 425, 17–33 (2012a)

    Google Scholar 

  6. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Proceedings of GECCO 2012, pp. 17–24 (2012b)

    Google Scholar 

  7. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions. Nat. Comput. 5, 257–283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  11. Feldmann, M., Kötzing, T.: Optimizing expected path lengths with ant colony optimization using fitness proportional update. In: Proceedings of FOGA 2013, pp. 65–74 (2013)

    Google Scholar 

  12. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. In: Proceedings of GECCO 2014, pp. 1383–1390 (2014)

    Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  14. Gutjahr, W., Pflug, G.: Simulated annealing for noisy cost functions. J. Global Optim. 8, 1–13 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comp. 3, 287–297 (1999)

    Article  Google Scholar 

  16. Jansen, T., Wegener, I.: Real royal road functions–where crossover provably is essential. Discrete Appl. Math. 149, 111–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34, 47–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey. IEEE Trans. Evol. Comp. 9, 303–317 (2005)

    Article  Google Scholar 

  19. Kötzing, T.: Concentration of first hitting times under additive drift. In: Proceedings of GECCO 2014, pp. 1391–1397 (2014)

    Google Scholar 

  20. Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-boolean optimization. In: Proceedings of GECCO 2011, pp. 989–996 (2011)

    Google Scholar 

  21. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 686–697. Springer, Heidelberg (2014)

    Google Scholar 

  22. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  23. Mühlenbein, H., Voigt, H.-M.: Gene pool recombination in genetic algorithms. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics, pp. 53–62. Springer, New York (1996)

    Chapter  Google Scholar 

  24. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. Natural Computing Series. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  25. Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of crossover for migration in parallel evolutionary algorithms. In: Proceedings of GECCO 2011, pp. 1587–1594 (2011)

    Google Scholar 

  26. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59, 369–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds in evolutionary computation (2012). arXiv:1211.7184 [cs.NE]

  28. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prügel-Bennett, A.: Benefits of a population: five mechanisms that advantage population-based algorithms. IEEE Trans. Evol. Comp. 14, 500–517 (2010)

    Article  Google Scholar 

  30. Richter, J.N., Wright, A., Paxton, J.: Ignoble trails - where crossover is provably harmful. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 92–101. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Storch, T., Wegener, I.: Real royal road functions for constant population size. Theor. Comput. Sci. 320, 123–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of GECCO 2005, pp. 1161–1167 (2005)

    Google Scholar 

  33. Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of GECCO 2012, pp. 689–702 (2012)

    Google Scholar 

  34. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest path problems. Algorithmica 64, 643–672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proceedings of GECCO 2007, pp. 1452–1459 (2007)

    Google Scholar 

  36. Weisstein, E.W.: Erfc, From MathWorld-A Wolfram Web Resource (2015). http://mathworld.wolfram.com/Erfc.html

  37. Witt, C.: Optimizing linear functions with randomized search heuristics - the robustness of mutation. In: Proceedings of STACS 2012, pp. 420–431 (2012)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 618091 (SAGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Kötzing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M. (2015). The Benefit of Recombination in Noisy Evolutionary Search. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics