Skip to main content

Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

  • 1192 Accesses

Abstract

A greedily routable region (GRR) is a closed subset of \(\mathbb R^2\), in which each destination point can be reached from each starting point by choosing the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygons with holes.

We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles, but can be solved optimally for trees in polynomial time. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Netw. 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  3. Calinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chazelle, B., Dobkin, D.: Optimal convex decompositions. In: Computational Geometry, pp. 63–133 (1985)

    Google Scholar 

  5. Chen, D., Varshney, P.K.: A survey of void handling techniques for geographic routing in wireless networks. Commun. Surv. Tutor. 9(1), 50–67 (2007)

    Article  Google Scholar 

  6. Costa, M., Létocart, L., Roupin, F.: A greedy algorithm for multicut and integral multiflow in rooted trees. Oper. Res. Lett. 31(1), 21–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa, M.C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. (2015, to appear). doi:10.7155/jgaa.00348

  9. Fang, Q., Gao, J., Guibas, L., de Silva, V., Zhang, L.: Glider: gradient landmark-based distributed routing for sensor networks. In: INFOCOM 2005, pp. 339–350. IEEE (2005)

    Google Scholar 

  10. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc. 125, 441–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keil, J.M.: Decomposing a polygon into simpler components. SIAM J. Comput. 14(4), 799–817 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad hoc networks. IEEE Netw. 15(6), 30–39 (2001)

    Article  Google Scholar 

  16. Nöllenburg, M., Prutkin, R., Rutter, I.: Partitioning graph drawings and triangulated simple polygons into greedily routable regions (2015). CoRR arXiv:1509.05635

  17. Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 476–487. Springer, Heidelberg (2014)

    Google Scholar 

  18. Tan, G., Bertier, M., Kermarrec, A.M.: Convex partition of sensor networks and its use in virtual coordinate geographic routing. In: INFOCOM 2009, pp. 1746–1754. IEEE (2009)

    Google Scholar 

  19. Tan, G., Kermarrec, A.M.: Greedy geographic routing in large-scale sensor networks: a minimum network decomposition approach. IEEE/ACM Trans. Netw. 20(3), 864–877 (2012)

    Article  Google Scholar 

  20. Zhu, X., Sarkar, R., Gao, J.: Shape segmentation and applications in sensor networks. In: INFOCOM 2007, pp. 1838–1846. IEEE (2007)

    Google Scholar 

Download references

Acknowledgements

The second author thanks Jie Gao for pointing him to the topic of GRR decompositions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Prutkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nöllenburg, M., Prutkin, R., Rutter, I. (2015). Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics