Abstract
A greedily routable region (GRR) is a closed subset of \(\mathbb R^2\), in which each destination point can be reached from each starting point by choosing the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygons with holes.
We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles, but can be solved optimally for trees in polynomial time. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Heidelberg (2013)
Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Netw. 7(6), 609–616 (2001)
Calinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–359 (2003)
Chazelle, B., Dobkin, D.: Optimal convex decompositions. In: Computational Geometry, pp. 63–133 (1985)
Chen, D., Varshney, P.K.: A survey of void handling techniques for geographic routing in wireless networks. Commun. Surv. Tutor. 9(1), 50–67 (2007)
Costa, M., Létocart, L., Roupin, F.: A greedy algorithm for multicut and integral multiflow in rooted trees. Oper. Res. Lett. 31(1), 21–27 (2003)
Costa, M.C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)
Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. (2015, to appear). doi:10.7155/jgaa.00348
Fang, Q., Gao, J., Guibas, L., de Silva, V., Zhang, L.: Glider: gradient landmark-based distributed routing for sensor networks. In: INFOCOM 2005, pp. 339–350. IEEE (2005)
Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)
Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc. 125, 441–453 (1999)
Keil, J.M.: Decomposing a polygon into simpler components. SIAM J. Comput. 14(4), 799–817 (1985)
Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)
Mauve, M., Widmer, J., Hartenstein, H.: A survey on position-based routing in mobile ad hoc networks. IEEE Netw. 15(6), 30–39 (2001)
Nöllenburg, M., Prutkin, R., Rutter, I.: Partitioning graph drawings and triangulated simple polygons into greedily routable regions (2015). CoRR arXiv:1509.05635
Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 476–487. Springer, Heidelberg (2014)
Tan, G., Bertier, M., Kermarrec, A.M.: Convex partition of sensor networks and its use in virtual coordinate geographic routing. In: INFOCOM 2009, pp. 1746–1754. IEEE (2009)
Tan, G., Kermarrec, A.M.: Greedy geographic routing in large-scale sensor networks: a minimum network decomposition approach. IEEE/ACM Trans. Netw. 20(3), 864–877 (2012)
Zhu, X., Sarkar, R., Gao, J.: Shape segmentation and applications in sensor networks. In: INFOCOM 2007, pp. 1838–1846. IEEE (2007)
Acknowledgements
The second author thanks Jie Gao for pointing him to the topic of GRR decompositions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nöllenburg, M., Prutkin, R., Rutter, I. (2015). Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_54
Download citation
DOI: https://doi.org/10.1007/978-3-662-48971-0_54
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48970-3
Online ISBN: 978-3-662-48971-0
eBook Packages: Computer ScienceComputer Science (R0)