
ar
X

iv
:1

51
2.

00
37

8v
1

 [c
s.

D
S

]
1

D
ec

 2
01

5

An In-place Framework for Exact and Approximate
Shortest Unique Substring Queries⋆

Wing-Kai Hon1, Sharma V. Thankachan2, and Bojian Xu3 ⋆⋆

1 Department of CS, National Tsing Hua University, Taiwan
2 School of CSE, Georgia Institute of Technology, USA

3 Department of CS, Eastern Washington University, USA
wkhon@cs.nthu.edu.tw, sthankac@cc.gatech.edu, bojianxu@ewu.edu

Abstract. We revisit the exact shortest unique substring (SUS) findingproblem, and propose its approximate ver-
sion where mismatches are allowed, due to its applications in subfields such as computational biology. We design
a generic in-place framework that fits to solve both the exactand approximatek-mismatch SUS finding, using the
minimum2n memory words plusn bytes space, wheren is the input string size. By using the in-place framework,
we can find the exact and approximatek-mismatch SUS for every string position using a total ofO(n) andO(n2)
time, respectively, regardless of the value ofk. Our framework does not involve any compressed or succinct data
structures and thus is practical and easy to implement.

Keywords: string pattern matching, shortest unique substring, in-place algorithms

1 Introduction

We consider astring S[1..n], where each characterS[i] is drawn from an alphabetΣ = {1, 2, . . . , σ}. We
say the characterS[i] occupiesthe string positioni. A substringS[i..j] of S representsS[i]S[i+1] . . . S[j]
if 1 ≤ i ≤ j ≤ n, and is an empty string ifi > j. We calli thestart position andj theending positionof
S[i..j]. We say the substringS[i..j] coversthekth position ofS, if i ≤ k ≤ j. StringS[i′..j′] is aproper
substring of another stringS[i..j] if i ≤ i′ ≤ j′ ≤ j andj′ − i′ < j − i. The length of a non-empty
substringS[i..j], denoted as|S[i..j]|, is j − i+ 1. We define the length of an empty string as zero.

The Hamming distanceof two non-empty stringsA andB of equal length, denoted asH(A,B), is
defined as the number of string positions where the characters differ. A substringS[i..j] is k-mismatch
unique, for somek ≥ 0, if there does not exist another substringS[i′..j′], such thati′ 6= i, j − i = j′ − i′,
andH(S[i..j], S[i′ ..j′]) ≤ k. A substring is ak-mismatch repeatif it is not k-mismatch unique.

Definition 1 (k-mismatch SUS).For a particular string positionp in S and an integerk, 0 ≤ k ≤ n − 1,
the k-mismatch shortest unique substring (SUS) covering position p, denoted asSUSk

p, is a k-mismatch
unique substringS[i..j], such that (1)i ≤ p ≤ j, and (2) there does not exist anotherk-mismatch unique
substringS[i′..j′], such thati′ ≤ p ≤ j′ andj′ − i′ < j − i.

We call0-mismatch SUS asexact SUS, and the casek > 0 asapproximate SUS.
For anyk andp, SUSk

p must exist, because at least the stringS can beSUSk
p, if none of its proper

substrings isSUSk
p. On the other hand, there might be multiple choices forSUS

k
p. For example, ifS =

abcbb, SUS 0
2 can be eitherS[1, 2] = ab or S[2, 3] = bc, andSUS

1
2 can be eitherS[1..3] = abc or

⋆ Authors are listed in alphabetical order. A preliminary version of this paper appears in Proceedings of the 26th International
Symposium on Algorithms and Computation (ISAAC), Nagoya, Japan, 2015.

⋆⋆ Corresponding author. Phone: +1 (509) 359-2817. Fax: +1 (509) 359-2215.

http://arxiv.org/abs/1512.00378v1

S[2..4] = bcb. Note that in Definition 1, we requirek < n, because findingSUSn
p is trivial: SUSn

p ≡ S for
any string positionp.

Problem (k-mismatch SUS finding).Given the stringS, the value ofk ≥ 0, and two empty integer arrays
A andB, we want to work in the place ofS, A, andB, such that, in the end of computation: (1)S does
not change. (2) Each(A[i], B[i]) pair saves the start and ending positions of the rightmost4 SUS

k
i , i.e.,

S
[

A[i]..B[i]
]

= SUS
k
i , using a total ofO(n) time fork = 0 andO(n2) time for anyk ≥ 1.

1.1 Prior work and our contribution

Exact SUS finding was proposed and studied recently by Pei et al. [7], due to its application in locating
snippets in document search, event analysis, and bioinformatics, such as finding the distinctness between
closely related organisms [3], polymerase chain reaction (PCR) primer design in molecular biology, genome
mapability [2], and next-generation short reads sequencing [1]. The algorithm in [7] can find all exact SUS
in O(n2) time using a suffix tree ofO(n) space. Following their proposal, there has been a sequence of
improvements [8,5] for exact SUS finding, reducing the time cost fromO(n2) to O(n) and alleviating the
underlying data structure from suffix tree to suffix array ofO(n) space. Hu et al. [4] proposed an RMQ
(range minimum query) technique based indexing structure,which can be constructed inO(n) time and
space, such that any future exact SUS covering any interval of string positions can be answered inO(1)
time. In this work, we make the following contributions:

– We revisit the exact SUS finding problem and also propose itsapproximate version where mismatches
are allowed, which significantly increases the difficulty aswell as the usage of SUS finding in subfields
such as bioinformatics, where approximate string matchingis unavoidable due to genetic mutation and
errors in biological experiments.

– We propose a generic in-place algorithmic framework that fits to solve both the exact and approximate
k-mismatch SUS finding, using2n words plusn bytes space. It is worth mentioning that2n words plus
n bytes is the minimum memory space needed to save thosen calculated SUSes: (1) It needs2 words
to save each SUS by saving its start and ending positions (or one endpoint and its length) and there are
n SUSes. (2) It needs anothern bytes to save the original stringS in order to output the actual content
of any SUS of interest from queries. Note that all prior work [7,8,5,4] useO(n) space but there is big
leading constant hidden within the big-oh notation (see theexperimental study in [5]).

– After the suffix array is constructed, all the computation in our solution happens in the place of two
integer arrays, using non-trivial techniques. It is worth noting that our solution does not involve any
compressed or succinct data structures, making our solution practical and easy to implement. Our pre-
liminary experimental study shows that our solution for exact SUS finding is even faster than the fastest
one among [7,8,5]5, in addition to a lot more space saving than them, enabling our solution to handle
larger data sets. Due to page limit, we will deliver the details of our experimental study in the journal
version of this paper.

2 Preparation

A prefix of S is a substringS[1..i], 1 ≤ i ≤ n. A proper prefix S[1..i] is a prefix ofS wherei < n. A
suffix of S is a substringS[i..n], denoted asSi, 1 ≤ i ≤ n. Si is aproper suffix of S, if i > 1.

4 Since any SUS may have multiple choices, it is our arbitrary decision to resolve the ties by picking the rightmost choice.
However, our solution can also be easily modified to find the leftmost choice.

5 Note that the work of [4] studies a different problem and its computation is of the query-answer model, and thus is not comparable
with [7,8,5] and ours.

2

For two stringsA andB, we writeA = B (and sayA is equal to B), if |A| = |B| andH(A,B) = 0.
We sayA is lexicographically smaller thanB, denoted asA < B, if (1) A is a proper prefix ofB, or (2)
A[1] < B[1], or (3) there exists an integerk > 1 such thatA[i] = B[i] for all 1 ≤ i ≤ k−1 butA[k] < B[k].

Thesuffix array SA[1..n] of the stringS is a permutation of{1, 2, . . . , n}, such that for anyi andj,
1 ≤ i < j ≤ n, we haveS[SA[i]..n] < S[SA[j]..n]. That is,SA[i] is the start position of theith smallest
suffix in the lexicographic order. Therank array RA[1..n] is the inverse of the suffix array, i.e.,RA[i] = j

iff SA[j] = i. The k-mismatch longest common prefix (LCP)between two stringsA andB, k ≥ 0,
denoted asLCPk(A,B), is the LCP ofA andB within Hamming distancek. For example, ifA = abc and
B = acb, then:LCP0(A,B) is A[1] = B[1] = a and|LCP0(A,B)| = 1; LCP1(A,B) is A[1..2] = ab

andB[1, 2] = ac and|LCP1(A,B)| = 2.

Definition 2 (k-mismatch LSUS).For a particular string positionp in S and an integerk, 0 ≤ k ≤ n− 1,
the k-mismatch left-bounded shortest unique substring (LSUS) starting at positionp, denoted asLSUSk

p,
is a k-mismatch unique substringS[p..j], such that eitherp = j or any proper prefix ofS[p..j] is not
k-mismatch unique.

We call0-mismatch LSUS asexact LSUS, and the casek > 0 asapproximate LSUS.
Observe that for anyk, LSUSk

1 = SUS
k
1 always exists, because at least the whole stringS can be

LSUS
k
1. However, for anyk ≥ 0 andp ≥ 2, LSUSk

p may not exist. For example, ifS = dabcabc, none of
LSUS

0
i andLSUS 1

j exists, for alli ≥ 5, j ≥ 4. It follows that some string positions may not be covered by
anyk-mismatch LSUS. For example, for the same stringS = dabcabc, positions6 and7 are not covered
by any exact or1-mismatch LSUS. On the other hand, if anyLSUSk

p does exist, there must be only one
choice forLSUSk

p, becauseLSUSk
p has its start position fixed onp and need to be as short as possible. Note

that in Definition 2, we requirek < n, because findingLSUSn
p is trivial asLSUSn

1 ≡ S andLSUSn
p does

not exist for allp > 1.

Definition 3 (k-mismatch SLS).For a particular string positionp in S and an integerk, 0 ≤ k ≤ n − 1,
we useSLSk

p to denote theshortestk-mismatch LSUS covering positionp.

We call0-mismatch SLS asexact SLS, and the casek > 0 asapproximate SLS.
SLS

k
p may not exist, since positionp may not be covered by anyk-mismatch LSUS at all. For example,

if S = dabcabc, then none ofSLS 0
p andSLS 1

p exists, for allp ≥ 6. On the other hand, ifSLSk
p exists, there

might be multiple choices forSLSk
p. For example, ifS = abcbac, SLS 0

2 can be eitherLSUS 0
1 = S[1..2]

or LSUS 0
2 = S[2..3], andSLS 1

3 can be any one ofLSUS 1
1 = S[1..3], LSUS 1

2 = S[2..4], andLSUS 1
3 =

S[3..5]. Note that in Definition 3, we requirek < n, because findingSLSn
p is trivial asSLSn

p ≡ S for all p.

Lemma 1. For any k and p: (1) LSUSk
1 always exists. (2) IfLSUSk

p exists, thenLSUSk
i exists, for all

i ≤ p. (3) If LSUSk
p does not exist, then none ofLSUS

k
i exists, for alli ≥ p.

Proof. (1) LSUSk
1 must exist, because at least the stringS can beLSUSk

1 if every proper prefix ofS is a
k-mismatch repeat. (2) IfLSUSk

p exists, sayLSUSk
p = S[p..q], q ≥ p, thenLSUSk

i exists for everyi ≤ p,
because at leastS[i..q] is k-mismatch unique. (3) It is true, because otherwise we get a contradiction to the
second statement in the lemma. ⊓⊔

Lemma 2. For anyk andp, |LSUSk
p | ≥ |LSUS

k
p−1 | − 1, if LSUSk

p exists.

Proof. Suppose thek-mismatch substringLSUSk
p = S[p..q], for someq ≥ p. Then,S[p − 1..q] is also

k-mismatch unique. It follows immediately that,|LSUSk
p−1 | ≤ |S[p− 1..q]| = 1 + |LSUSk

p |. ⊓⊔

3

Lemma 3. For anyk andp, SUSk
p is eitherSLSk

p or S[i..p], for somei, i + |LSUSk
i | − 1 < p. That is,

SUS
k
p is either the shortestk-mismatch LSUS that covers positionp, or a right extension (through position

p) of ak-mismatch LSUS.

Proof. We knowSUS
k
p must exist, because at least the stringS can beSUSk

p. Let’s saySUSk
p = S[i..j],

i ≤ p ≤ j. If S[i..j] is neitherLSUSk
i nor a right extension ofLSUSk

i , it meansS[i..j] is a proper prefix
of LSUSk

i and thus is ak-mismatch repeat, which is a contradiction to the fact thatS[i..j] = SUS
k
p is

k-mismatch unique. Therefore,SUSk
p = S[i..j] is eitherLSUSk

i , or a right extension ofLSUSk
i (clearly,

j ≡ p in this case). Further, ifSUSk
p = S[i..j] = LSUS

k
i , it is obvious thatLSUSk

i must be the shortest
k-mismatch LSUS covering positionp, i.e.,SUSk

p = SLS
k
p. ⊓⊔

For example, letS = dabcabc, then: (1)SUS0
3 can be eitherS[3..5] = LSUS

0
3, or S[1..3], which is a

right extension ofLSUS0
1 = S[1]. (2) SUS0

5 = S[4..5] = LSUS
0
4. (3) SUS 0

6 = S[4..6], which is a right
extension ofLSUS 0

4 = S[4..5]. (4) SUS 1
4 = S[3..5] = LSUS

1
3. (5) SUS1

6 = S[3..6], which is a right
extension ofLSUS 1

3.

The next lemma further says that ifSUSk
p is an extension of ank-mismatch LSUS,SUSk

p can be quickly
obtained fromSUSk

p−1.

Lemma 4. For anyk andp, if SUSk
p = S[i..p] and i + |LSUS k

i | − 1 < p, i.e.,SUSk
p is a right extension

(through positionp) of LSUSk
i , then the following must be true: (1)p > 2; (2) the rightmost character of

SUS
k
p−1 is S[p− 1]; (3) SUSk

p = SUS
k
p−1 S[p], the substringSUSk

p−1 appended by the characterS[p].

Proof. If SUS
k
p is a right extension (through positionp) of a k-mismatch LSUS, it is certain thatp > 1,

becauseSUSk
1 ≡ LSUS

k
1, which always exists (Lemma 1).

BecauseSUSk
p is a right extension (through positionp) of a k-mismatch LSUS, we haveSUSk

p =

S[i..p] for somei < p, andLSUSk
i = S[i..j] for somej < p. We also knowS[i..p − 1] is k-mismatch

unique, because thek-mismatch unique substringS[i..j] is a prefix ofS[i..p − 1]. Note that any substring
starting from a position beforei and covering positionp− 1 is longer than thek-mismatch unique substring
S[i..p − 1], soSUS

k
p−1 must be starting from a position betweeni andp − 1, inclusive. Next, we show

SUS
k
p−1 actually must start at positioni.

The fact thatSUSk
p = S[i..p] implies|LSUSk

t | ≥ |SUS
k
p | = p− i+1 for everyt = i+1, i+2, . . . , p;

otherwise, rather thanS[i..p], any one of theseLSUSk
t whose size is smaller thanp− i+1 would be a better

choice forSUSk
p. That means, anyk-mismatch unique substring starting fromt = i + 1, i + 2, . . . , p − 1

has a length at leastp − i + 1. However,|S[i..p − 1]| = p − i < p − i + 1 andS[i..p − 1] is k-mismatch
unique already and covers positionp − 1 as well, soS[i..p − 1] is the only choice forSUSk

p−1. This also
meansSUSk

p is indeed the substringSUSk
p−1 appended by the characterS[p]. ⊓⊔

3 The High-Level Picture

In this section, we present an overview of our in-place framework for finding both the exact and approximate
SUS. The framework is composed of three stages, where all computation happens in the place of three arrays,
S, A, andB, each of sizen. ArraysA andB are of integers, whereas arrayS always saves the input string.
The following table summarizes the roles ofA andB at different stages by showing their content at the end
of each stage.

4

Stages A[i] B[i]

1
Used as temporary workspace during stage 1, but
the content is useless for stages2 and3.

Ending position ofLSUSk
i , if LSUSk

i ex-
ists; otherwise,NIL.

2
The largestj, such thatLSUSk

j is anSLS
k
i , if

SLS
k
i exists; otherwise,NIL.

Ending position ofLSUSk
i , if LSUSk

i ex-
ists; otherwise,NIL.

3 Start position of the rightmostSUSk
i Ending position of the rightmostSUSk

i

Stage 1(Section 4). We take the arrayS that saves the input string as input to computeLSUS
k
i for all

i, in the place ofA andB. At the end of the stage, eachB[i] saves the ending position ofLSUSk
i , if

LSUS
k
i exists. Since each existingLSUSk

i has its start position fixed ati, at the end of stage 1, each existing
LSUS

k
i = S

[

i..B[i]
]

. For those non-existingk-mismatch LSUSes, we assignNIL to the corresponding
B array elements. The time cost of this stage isO(n) for exact LSUS finding (k = 0), and isO(n2) for
approximate LSUS finding, for anyk ≥ 1.

Stage 2(Section 5). Given the arrayB (i.e., thek-mismatch LSUS array ofS) from stage 1, we compute
the rightmostSLSk

i , the rightmost shortest LSUS covering positioni, for all i, in the place ofA andB. At
the end of stage 2, eachA[i] saves the largestj, such thatLSUSk

j is anSLSk
i , i.e., the rightmostSLSk

i =

S
[

A[i]..B[A[i]]
]

, if SLSk
i exists; otherwise, we assignA[i] = NIL. ArrayB does not change during stage 2.

The time cost of this stage isO(n), for anyk ≥ 0.

Stage 3(Section 6). GivenA andB from stage 2, we computeSUSk
i , for all i, in the place ofA andB.

At the end of stage 3, each(A[i], B[i]) pair saves the start and ending positions of the rightmostSUS
k
i , i.e.,

SUS
k
i = S

[

A[i]..B[i]
]

. The time cost of this stage isO(n), for anyk ≥ 0.

Algorithms 1, 2, 3, and 4 in the appendix give the pseudocode of the in-place procedures that we will
describe in Sections 4.1, 4.2, 5, and 6, respectively.

4 Finding k-mismatch LSUS

The goal of this section is that, given the input stringS and two integer arraysA andB, we want to work in
the place ofA andB, such thatB[i] saves the ending position ofLSUSk

i for all existingLSUSk
i ; otherwise,

B[i] is assignedNIL. We take different approaches in finding the exact LSUS (k = 0) and approximate
LSUS (k ≥ 1).

4.1 Finding exact LSUS (k = 0)

Lemma 5 (Lemma 7.1 in [6]).Given the stringS of sizen, drawn from an alphabet of sizeσ, we can
construct the suffix arraySA of S in O(n) time, usingn+ σ words plusn bytes, where the space ofn bytes
savesS, the space ofn words savesSA, and the extra space ofσ words is used as the workspace for the run
of theSA construction algorithm.

Given the input stringS, we first use theO(n)-time suffix array construction algorithm from [6] to create
theSA of S, where the arrayA is used to save theSA and the arrayB is used as the workspace. Note that
σ ≤ n is always true, because otherwise we will prune from the alphabet those characters that do not appear
in the string. AfterSA (saved inA) is constructed, we can easily spend anotherO(n) time to create the rank
arrayRA of S (saved inB): RA[SA[i]]← i (i.e.,B[A[i]]← i), for all i. Next, we use and work in the place
of A (i.e.,SA) andB (i.e.,RA) to compute the ending position of each existingLSUS

0
i and save the result

in B[i], using anotherO(n) time.

5

Definition 4.

xi =

{
∣

∣ LCP
0
(

S[i..n], S [SA [RA[i]− 1] ..n]
) ∣

∣, if RA[i] > 1
0, otherwise

yi =

{
∣

∣ LCP
0
(

S[i..n], S [SA [RA[i] + 1] ..n]
)
∣

∣, if RA[i] < n

0, otherwise

That is,xi (yi, resp.) is the length of the longest common prefix ofS[i..n] and its lexicographically preceding
(succeeding, resp.) suffix, if the preceding (succeeding, resp.) suffix exists.

Fact 1 For every string positioni, 1 ≤ i ≤ n:

LSUS
0
i =

{

S [i..i+max{xi, yi}] , if i+max{xi, yi} ≤ n

not existing, otherwise.

First, observe that in the sequence ofxi’s, if xi > 0, thenxi+1 ≥ xi − 1 must be true, because at least
S[SA[RA[i] − 1] + 1..n] can be the lexicographically preceding suffix ofS[i + 1..n], and they share the
leadingxi − 1 characters. That means, when we computexi+1, we can skip over the comparisons of the
first xi − 1 pair of characters betweenS[i+ 1..n] and its lexicographically preceding suffix. It follows that,
given theSA andRA of S and using the above observation, we can compute the sequenceof xi’s in O(n)
time. Using the similar observation, we can compute the sequence ofyi’s in O(n) time, provided thatS and
its SA andRA are given.

Second, since we can compute the sequences ofxi’s andyi’s in parallel (i.e., compute the sequence of
(xi, yi) pairs), we can use Fact 1 to compute the sequence ofLSUS

0
i in O(n) time. Further, sinceRA[i] is

used only for retrieving the lexicographically preceding and succeeding suffixes ofS[i..n] when we compute
the pair (xi, yi), we can save each computedLSUS

0
i (indeed,i+max{xi, yi}, the ending position ofLSUS0

i)
in the place ofRA[i] (i.e.,B[i]). In the casei +max{xi, yi} > n, meaningLSUS0

i does not exist,we will
assignNIL toRA[j] (i.e.,B[j]) for all j ≥ i (Lemma 1). The overall time cost for computing the sequence
of LSUS 0

i is thusO(n), yielding the following lemma.

Lemma 6. Given the character arrayS of sizen that saves the input string, and the integer arraysA and
B, each of sizen, we can work in the place ofS, A, andB, usingO(n) time, such that at the end of the
computation,S does not change,B[i] saves the ending of position ofLSUS 0

i , if LSUS0
i exists (otherwise,

B[i] = NIL).

4.2 Finding approximate LSUS (k ≥ 1)

Definition 5. For a particular string positionp in S and an integerk, 0 ≤ k ≤ n − 1, the k-mismatch
left-bounded longest repeat (LLR)starting at positionp, denoted asLLRk

p, is ak-mismatch repeatS[p..j],
such that eitherj = n or S[p..j + 1] is k-mismatch unique.

Fact 2 (1) If |LLRk
p | < n − p + 1, i.e., the ending position ofLLRk

p is less thann, thenLSUS
k
p =

S
[

p..p + |LLRk
p |
]

, the substring ofLLRk
p appended by the character followingLLRk

p. (2) Otherwise,

LSUS
k
p does not exist.

Our high-level strategy for findingLSUSk
i for all i is as follows. We first findLLRk

i for all i. Then we
use Fact 2 to find eachLSUSk

i from LLR
k
i : If LLRk

i does not end on positionn, we will extend it for one
more character on its right side and make the extension to beLSUS

k
i ; otherwise,LLRk

i does not exist. Next,
we explain how to findLLRk

i , for all i.

6

Clearly, |LLRk
i | = max{|LCPk(Si, Sj)|, j 6= i}, for all i. The way we calculate|LLRk

i | for all i is
simply to let every pair of two distinct suffixes to be compared with each other. In order to do so, we work
overn− 1 phases, named asP1 throughPn−1. On a particular phasePδ, we compare suffixesSi andSi−δ

for all i = n, n − 1, . . . , δ + 1. Obviously, over thesen − 1 phases, every pair of distinct suffixes have
been compared with each other exactly once. Over thesen − 1 phases, we simply record inB[i], which is
initialized to be0, the length of the longestk-mismatch LCP that each suffixSi has seen when compared
with any other suffixes. Next, we explain the details of a particular phasePδ.

On a particular phasePδ, 1 ≤ δ ≤ n−1, we compare suffixesSi andSi−δ for all i = n, n−1, . . . , δ+1.
When we compareSi andSi−δ, we save inA[1..k + 1], which is initialized to be empty at the beginning
of each phase, the leftmost mismatchedk + 1 positions inSi. We will see later how to updateA[1..k + 1]
efficiently over the progress of a particular phase and use itto update theB array.

We treatA[1..k+1] as a circular array, i.e.,i−1 = k+1 wheni = 1, andi+1 = 1 wheni = k+1. Let
size, which is initialized to be0 at the beginning of each phase, denote the number of mismatched positions
being saved inA[1..k + 1] so far inPδ. We can describe the work of phasePδ, inductively, as follows.

1. We compareSn andSn−δ by only comparingS[n] andS[n− δ], sinceSn = S[n].

(a) If S[n] 6= S[n− δ]: Saven in any position inA[1..k + 1]; size← 1.
(b) B[n]← max{B[n], 1}; B[n− δ]← max{B[n− δ], 1}.

2. Suppose we have finished the comparison between the suffixes Si+1 andSi+1−δ, for somei, δ + 1 ≤
i ≤ n− 1. The leftmostk + 1 mismatched positions (if existing) between them have been saved in the
circular arrayA[1..k + 1]. LetA[cursor] be the element that is saving the first mismatched position (if
existing) between the two suffixes.

3. Next, we compare the suffixesSi andSi−δ by only comparingS[i] andS[i− δ], sinceSi+1 andSi+1−δ

have been compared. Remind thatcursor− 1 below is in its cyclic manner.

(a) If S[i] 6= S[i − δ]: cursor ← cursor − 1; Savei in A[cursor] and overwrite the old content in
A[cursor] if there is;size← min{size+ 1, k + 1}.

(b) If size < k + 1: B[i]← max{B[i], n − i+ 1}; B[i− δ]← max{B[i− δ], n − i+ 1}.
(c) Else:B[i]← max{B[i], A[cursor− 1]− i}; B[i− δ]← max{B[i− δ], A[cursor− 1]− i}. Note

thatA[cursor− 1] is saving the(k + 1)th mismatched position betweenSi andSi−δ.

After the computation of allLLRk
i is finished, using the aboven−1 phases, eachB[i] is saving|LLRk

i |.
Next, we can use Fact 2 to convert eachLLR

k
i toLSUS

k
i by simply checking eachB[i]: If i+B[i]−1 < n,

i.e.,LLRk
i does not end on positionn, then we assigneB[i] = i + B[i], the ending position ofLSUSk

i ;
otherwise, we assignB[i] = NIL, meaningLSUSk

i does not exist.

The computation of allLLRk
i takesn−1 phases and each phase clearly has no more thann comparisons,

giving a total ofO(n2) time cost. The procedure of converting eachLLR
k
i to LSUS

k
i spends anotherO(n)

time. Altogether, we get anO(n2)-time in-place procedure for finding approximate LSUS, for any k ≥ 1.

Lemma 7. Given the character arrayS of sizen that saves the input string, the integer arraysA andB,
each of sizen, and the value of integerk ≥ 1, we can work in the place ofS, A, andB, usingO(n2) time,
such that at the end of the computation,S does not change,B[i] saves the ending of position ofLSUS

k
i , i.e.,

LSUS
k
i = S[i..B[i]], if LSUSk

i exists; otherwise,B[i] = NIL.

7

5 Finding k-mismatch SLS

Now we are given the arrayB, where eachB[i] saves the ending position ofLSUSk
i if LSUS

k
i exists

andNIL otherwise. In this section, we want to work in the place ofA andB, such that in the end of
computation:A[i] savesj, such thatLSUSk

j is the rightmostSLSk
i , if suchj exists; otherwise,A[i] = NIL.

That means, in the end of this section, the rightmostSLS
k
i = S

[

A[i]..B[A[i]]
]

, if SLSk
i exists; otherwise,

A[i] = B[i] = NIL.
Recall that somek-mismatch LSUS may not exist and some positions may not be covered by anyk-

mismatch LSUS (see the examples after Definition 2). Further, due to Lemmas 1 and 2, we know such
positions that are not covered by anyk-mismatch LSUS must comprise a continuous chunk on the rightend
of stringS.

Definition 6. LetLSUSk
r , 1 ≤ r ≤ n, be the rightmost existingk-mismatch LSUS of the input stringS. Let

z, 1 ≤ z ≤ n, be the rightmost string position that is covered by anyk-mismatch LSUS of the stringS.

Again, due to Lemmas 1 and 2, it is trivial to find the values ofr andz in O(n) time: scan arrayB (i.e.
LSUS array) from right to left, and stop when seeing the first non-NIL B array element, which is exactly
B[r], thenz = B[r]. If z < n, we can then simply setA[i] = NIL for all i > z. Recall thatB[i] = NIL

already for alli > r from stage 1. In the rest of this section, we only need to work with the two subarrays
A[1..z] andB[1..z], wanting to makeA[i] to be the start position of the rightmostSLS

k
i , for all i ≤ z.

LetB[1..z] and an integerr, 1 ≤ r ≤ z, be the input, where (1)B[1..r] is of monotonically nondecreas-
ing integers (Lemma 2), withi ≤ B[i], (2)B[r + 1..z] are allNIL, if r < z, and (3)B[r] = z.

We can use eachB[i], i ≤ r, as a compact representation of the intervalIi = (i, B[i]). Let I = { Ii |
i ∈ [1..r] }, andℓi = |B[i] − i + 1| be the length ofIi. Let A[1..z] be an output array such thatA[j] = i,
whereIi is the rightmost shortest interval inI that coversj.

To illustrate the ideas and concepts that we will present in the rest of this section, let us use the following
as a running example, wherer = 9, z = 15, andn = 17 (we add(0, B[0]) = (0, 0) as a sentinel).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B[i] 0 3 4 7 8 10 10 10 11 15 − − − − − − − −

ℓi 0 3 3 5 5 6 5 4 4 7 − − − − − − − −

pred[i] − − − 2 2 4 2 2 2 8 − − − − − − − −

ti − 1 2 5 5 9 6 7 8 12 − − − − − − − −

max t−1

i − 1 2 − − 4 6 7 8 5 − − 9 − − − − −

A[i] − 1 2 2 2 4 6 7 8 8 8 8 9 9 9 9 − −

Definition 7. For an intervalIi, we define theeffective covering regionwith respect to the previous intervals
I<i = { Ik | k < i } to be

[

ti, B[i]
]

where

ti = max
{

i, max {B[k] + 1 | Ik is shorter thanIi, k < i }
}

.

We callti the starting point of the effective covering region ofIi.

The effective covering region ofIi is exactly those regions that would setIi as the answer, provided that all
the intervalsI<i beforeIi are present, and all the intervalsI>i = { Ik | k > i } are absent.

We next definet−1

i as a list6, such thatj ∈ t−1

i if and only if tj = i. Observe that sinceti ≥ i by definition,
any valuej in t−1

i must havej ≤ i, and the effective region ofIj must coveri.

6 In actual run,t−1

i saves the largest number in that list, as we will see more clearly later.

8

Lemma 8. For i = 1, 2, . . . , z:

A[i] = max
i
⋃

k=1

t−1

k = max { A[i− 1], max t−1

i }.

Proof. Let j = max
⋃i

k=1
t−1

k . This means that for the effective region of anyIh, with h > j, none of
them coversi. Next, observe thatIj must coveri; otherwise, for all the intervalsIh with h < j, we have
B[h] ≤ B[j] < i, so that none of them can coveri, and thus a contradiction occurs. Finally, we show that
for thoseh < j, Ih can be pruned byIj, thus implying thatA[i] = j is a correct answer.

Consider all thoseh with h < j:

1. If Ih is longer thanIj, Ih can be pruned away directly.
2. Else, ifIh andIj have equal length,Ih can be pruned away also, regardless of its coverage oni, since

we pick the rightmost shortest interval that coversi.
3. Else,h must appear in

⋃i
k=1

t−1

k . By the definition oftj , we haveB[h] < tj ≤ i; thus,Ih does not cover
i, and can be pruned away.

Thus, the first equality in the lemma follows, while the second equality in the lemma is trivial once we have
the first equality. ⊓⊔

Lemma 9. Suppose that allti, 1 ≤ i ≤ r, can be generated incrementally inO(n) time. Then, we can
obtain allmax t−1

i , 1 ≤ i ≤ z, in O(n) time.

Proof. We examine eachti, i = 1, 2, . . . , r, and writei at entryti = j of the t−1 array; if such an entry
contains a valuei′ already, we simply overwritei′ with the latteri. ⊓⊔

Indeed, we may scanti from right to left, i.e.,i = r, r − 1, . . . , 1, and updatemax t−1

i as we proceed.
Firstly, if ti > i, we sett−1

i = undefined. Else, letj = ti (whose value is at leasti), and we check ift−1

j is

defined: If not, simply sett−1

j = i; otherwise, no update is needed.

The advantage of the ‘right-to-left’ approach is that we canconstructt−1

i in-place, by re-using the memory
space ofti. To see why it is so, by the time we need to update a certain entry j = ti at stepi, the information
tj has been used (and will never be used), so that we can safely overwrite the original entry, storingtj , to
storet−1

j instead. This gives the following corollary.

Corollary 1. Suppose that allti’s are generated, and are stored in a certain arrayA[1..z]. Then, we can
obtainmax t−1

i for all i’s, in-place, by storing the results in the same arrayA[1..z]; the time cost isO(n).

Our goal is to make our algorithm in-place. Suppose that we can have in-place incremental generation ofti.
Then, by the above lemma, we may storemax t−1

i temporarily atA[i]; afterwards, by the second equality
of Lemma 8, we can compute the correct outputA by a simple scan ofA from left to right.

Thus, to make the whole process in-place, it remains to show how ti can be computed inO(n) time, in-
place. For this, we definepred[i] to be the largestj (if it exists) such thatj < i and length ofIj is shorter than
Ii. It is easy to check that ifpred[i] = j is defined, thenti = max { B[j] + 1, i } (andti = i otherwise).7

Moreover,pred[i] for all i’s can be computed incrementally, with a way analogous to theconstruction of
the failure function in KMP algorithm: we checkpred[i − 1], pred[pred[i − 1]], pred[pred[pred[i− 1]],

7 For eachj′ < j, if Ij′ coversi, Ij would also coveri; in such a case,B[j] + 1 ≥ B[j′] + 1. For eachj′ ∈ [pred[i], i− 1], Ij′
is longer thanIi.

9

and so on, until we obtainj in the process such thatIj is shorter thanIi, and setpred[i] := j.8 If such j
does not exist, we setpred[i] = NIL. The running time is bounded byO(n).

This gives the followingO(n)-time in-place algorithm (whereB is read-only):

1. Computepred[i], i = 1, 2, . . . , r, and store this inA[i]. Note that this step requires the length informa-
tion of the intervals ofIi, which can be obtained inO(1) time, on the fly, fromB[i] .

2. ScanA[1..r] (i.e.,pred) incrementally, and obtainti from the above discussion. The value ofti is stored
in A[i]. Note that this step requires the access to the originalB.

3. ScanA[1..r] (i.e., ti) from right to left, and obtainmax t−1

i decrementally (stored inA[i]) by Corol-
lary 1.

4. ScanA[1..z] (i.e.,max t−1

i) incrementally (i = 1, 2, . . . , z), and obtain the desiredA[i] by the second
equality in Lemma 8.

Lemma 10. Given the integer arrayA andB, each of sizen, where eachB[i] saves the ending position
of LSUSk

i , if LSUSk
i exists andNIL otherwise, we can work in the place of arrayA andB, usingO(n)

time, such that, in the end of computation, arrayB does not change, andA[i] savesj, whereLSUSk
j is the

rightmostSLSk
i , if suchj exists; otherwise,A[i] = NIL. That is,SLSk

i = S
[

A[i]..B[A[i]]
]

, if SLSk
i exists;

otherwise,A[i] = B[i] = NIL.

6 Finding k-mismatch SUS

Now we have arrayA, whereA[i] = j, such thatLSUSk
j is the rightmostSLSk

i , if position i is covered
by anyk-mismatch LSUS; otherwise,A[i] = NIL. Note thatA[i] = j is recording the start position of
the rightmostSLSk

i already, becauseLSUSk
j starts on positionj. We also have arrayB, whereB[i] =

i+ |LSUS k
i | − 1, the ending position ofLSUSk

i , if LSUSk
i exists; otherwise,B[i] = NIL.

Step I.We want to transformA andB, such that each(A[i], B[i]) pair saves the start and ending positions of
SLS

k
i , if SLS k

i exists; otherwise, we set(A[i], B[i]) = (NIL, NIL). Since eachA[i] is already recording the
start position ofSLSk

i already, as we have explained at the beginning of this section, we only need to make
changes to arrayB. We first setB[i] = NIL for all i > z (Definition 6). Then, we scan arrayB from right
to left, starting from positionz through1, and set eachB[i] = B[A[i]], the ending position of the rightmost
SLS

k
i . Because the leftmost position that any existingLSUS

k
i can cover is positioni, we knowA[i] ≤ i

and we no longer needB[i] (i.e., the information ofLSUSk
i) afterSLS i is computed. Therefore, it is safe to

recordSLSk
i by overwritingB[i] by B[A[i]] (i.e., the ending position ofSLSk

i), in this right-to-left scan.

Step II. We use arraysA andB to calculateSUSk
i for eachi and save the result in the place ofA andB,

i.e., each(A[i], B[i]) pair saves the start and ending position ofSUS
k
i . Because of Lemma 3 and 4, we can

use arraysA andB to compute eachSUSk
i inductively, as follows:

1. SUSk
1 = LSUS

k
1 = SLS

k
1 = S

[

A[1]..B[1]
]

.
2. Fori = 2, 3, . . . , n, we computeSUSk

i :
(a) If (A[i], B[i]) = (NIL, NIL), meaningSLSk

i does not exist, we setSUSk
i to beSUSk

i−1 appended by
the characterS[i], i.e.,SUSk

i = S
[

A[i− 1]..B[i− 1]+ 1
]

, and saveSUSk
i by setting(A[i], B[i]) =

(A[i − 1], B[i − 1] + 1);

8 Intuitively, pred defines the shortcuts so that we can skip some intervals inI<i to computeti.

10

(b) Else, ifSUSk
i−1 ends at positioni− 1 andSUSk

i−1 S[i] = S
[

A[i− 1]..B[i− 1] + 1
]

is shorter than
SLS

k
i = S

[

A[i]..B[i]
]

, we set(A[i], B[i]) = (A[i − 1], B[i− 1] + 1);
(c) Else,SUSk

i = SLS
k
i and thus we leaveA[i] andB[i] unchanged.

Lemma 11. Given arraysA andB:

– A[i] = j, such thatLSUSk
j is the rightmostSLSk

i , if SLSk
i exists; otherwise,A[i] = NIL;

– B[i] = i+ |LSUSk
i | − 1, the ending position ofLSUSk

i , if LSUSk
i exists; otherwise,B[i] = NIL.

we can work in the place ofA andB, usingO(n) time, such that, in the end of computation, each(A[i], B[i])
saves the start and ending positions ofSUS

k
i , i.e.,SUSk

i = S
[

A[i]..B[i]
]

, i = 1, 2, . . . , n.

By concatenating the claims in Lemmas 6, 7, 10, and 11, we get the final result.

Theorem 1. Given the arrayS of sizen that saves the input string, two empty integer arraysA andB,
each of sizen, and the value of integerk ≥ 0, we can work in the place of arraysS, A, andB, using a
total ofO(n) time fork = 0 andO(n2) time for anyk ≥ 1, such that in the end of computation,S does
not change, each(A[i], B[i]) pair represents the start and ending positions of the rightmost SUSk

i , i.e.,
SUS

k
i = S

[

A[i]..B[i]
]

.

7 Conclusion

In this paper, we revisited the exact SUS finding problem, andproposed its approximate version where
mismatches are allowed, and thus significantly extended theusage of SUS finding in subfields such as
computational biology. We designed a generic in-place algorithmic framework that uses the minimum2n
words plusn bytes space and can fit to find both exact and approximatek-mismatch SUS, withO(n) and
O(n2) time complexities, respectively, regardless of the value of any k ≥ 1. An urgent future work will
be researching for a faster (and still practical) in-place algorithm for finding approximate LSUS to replace
the current algorithm discussed in Section 4.2. Such new algorithm will lead to an overall faster in-place
solution for approximate SUS finding.

References

1. Adaş, B., Bayraktar, E., Faro, S., Moustafa, I., Külekci, M.O.: Nucleotide sequence alignment and compression viashortest
unique substring. In: Proceedings of the 3rd InternationalWork-Conference on Bioinformatics and Biomedical Engineering
(IWBBIO). pp. 363–374 (2015)

2. Derrien, T., Estell, J., Marco Sola, S., Knowles, D.G., Raineri, E., Guig, R., Ribeca, P.: Fast computation and applications of
genome mappability. PLoS ONE 7(1), e30377 (01 2012)

3. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison without alignment using shortest unique substrings. BMC
Bioinformatics 6, 123 (2005)

4. Hu, X., Pei, J., Tao, Y.: Shortest unique queries on strings. In: Proceedings of the 21st International Symposium on String
Processing and Information Retrieval (SPIRE). pp. 161–172(2014)

5. İleri, A.M., Külekci, M.O., Xu, B.: A simple yet time-optimal and linear-space algorithm for shortest unique substring queries.
Theoretical Computer Science 562(0), 621 – 633 (2015), (also in CPM2014.)

6. Nong, G.: Practical linear-timeO(1)-workspace suffix sorting for constant alphabets. ACM Transactions on Information Sys-
tems (TOIS) 31(3), 15:1–15:15 (Aug 2013)

7. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: Proceedings of IEEE International Conference on Data
Engineering (ICDE). pp. 937–948 (2013)

8. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings queries in optimal time. In: Proceedings of Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM). pp. 503–513 (2014)

11

Appendix

Algorithm 1: Finding exact LSUS
Input : StringS and integer arraysA andB, each of sizen.
Output : S does not change.B[i] = ending position ofLSUS

0

i , if LSUS
0

i exists; otherwise,B[i] = NIL.

1 Create theSA of S using the suffix array construction algorithm from [6], where arrayA is used to save the resultingSA
andB is used as the workspace for the run of the algorithm.

/* Create the RA of S and save the result in the array B. */

2 for i = 1 . . . n doRA[SA[i]]← i ; // i.e., SA = A, RA = B, and B[A[i]]← i.

/* From here on, A and SA are the same physical array. B, RA, and LSUS are the

same physical array. */

3 x← 0; y ← 0;
4 for i = 1, 2, . . . , n do
5 if RA[i] > 1 then
6 j ← SA[RA[i]− 1];

/* Calculate the length of the 0-mismatch LCP between S [i..n] and its

lexicographically preceding suffix. */

7 while S [i+ x] = S [j + x] do x← x+ 1

8 else x← 0;
9 if RA[i] < n then

10 j ← SA[RA[i] + 1];
/* Calculate the length of the 0-mismatch LCP between S [i..n] and its

lexicographically succeeding suffix. */

11 while S [i+ y] = S [j + y] do y ← y + 1;

12 else y ← 0;
13 if i+max{x, y} ≤ n then LSUS [i]← i+max{x, y}; // ending position of |LSUS i |
14 else // LSUS i does not exist. Early stop.

15 for j = i . . . n do LSUS [j]← NIL;
16 Break;

17 if x > 0 then x← x− 1;
18 if y > 0 then y ← y − 1;

12

Algorithm 2: Finding approximate LSUS
Input : StringS and integer arraysA andB, each of sizen, the value ofk ≥ 1.
Output : S does not change.B[i] = ending position ofLSUS

k
i , if LSUS

0

i exists; otherwise,B[i] = NIL.

1 for i = 1 . . . n do B[i]← 0 ; // Initialization

/* We use A[1 . . . k + 1] as a circular array to save the k + 1 most recently found

mismatched positions. */

2 capacity ← k + 1; // The capacity of the circular array that records at most k + 1
mismatched positions.

3 cursor ← 1; // The index of the circular array position that is saving the most

recently founded mismatched position. It can be initialized to be any value from

{1, 2, . . . , capacity}.

4 for δ = 1 . . . n− 1 do // n− 1 phases

5 size← 0 ; // The number of recorded mismatched positions in the circular array in

the current phase.

6 for i = n down toδ + 1 do

/* Comparing suffixes Si and Si−δ by comparing their leading characters, as

their remaining characters have been compared in previous steps of this

phase. */

7 if S[i] 6= S[i− δ] then
8 cursor ←

(

(cursor − 2 + capacity) mod capacity
)

+ 1; // We use 1-based indexing.

9 A[cursor]← i;
10 size← min(size+ 1, capacity);

11 if size < capacity then
12 B[i]← max(B[i], n− i+ 1) ; // = size− i+ 1
13 B[i− δ]← max(B[i− δ], n− i+ 1);

14 else

15 B[i]← max
(

B[i], A
[(

(cursor − 1 + k) mod capacity
)

+ 1
]

− i
)

; // We use 1-based

indexing.

16 B[i− δ]← max
(

B[i− δ], A
[(

(cursor − 1 + k) mod capacity
)

+ 1
]

− i
)

;

17 for i = 1 . . . n do
18 if B[i] = size− i+ 1 then B[i]← NIL; // LSUS

k
i does not exist.

19 else B[i]← i+B[i]; // The ending position of LSUS
k
i .

13

Algorithm 3: Finding SLS (exact or approximate)
Input : Integer arraysA andB, each of sizen. EachB[i] saves the ending position ofLSUS

k
i , if LSUS

k
i exists;NIL,

otherwise.
Output : ArrayB does not change. EachA[i] = j, such thatLSUS

k
j is the rightmostSLS k

i , if SLS k
i exists; otherwise,

A[i] = NIL.

/* Find the index of the rightmost existing k-mismatch LSUS. */

1 for r = n down to1 do if B[r] 6= NIL then break;

/* Compute the pred array, using the memory space of A array. pred[i] is the largest

j, such that j < i and |LSUS
k
j | < |LSUSk

i |, if such j exists; otherwise pred[i] = NIL.

If LSUS
k
i does not exist, pred[i] = NIL also. From here on, pred and A are the same

physical array. */

2 if r < n then for i = r+1 . . . n do pred[i]← NIL ; // Positions that do not have k-mismatch LSUS

3 pred[1]← NIL;
4 for i = 2 . . . r do
5 ℓi ← B[i]− i+ 1 ; // |LSUS

k
i |

6 j ← i− 1;
7 while pred[j] 6= NIL andB[j] − j + 1 >= ℓi do j ← pred[j];
8 if B[j]− j + 1 < ℓi then pred[i]← j; else pred[i]← NIL;

/* Compute the t array, using the memory space of A array. t[i] is the start

position of the effective region of LSUS
k
i , if LSUS

k
i exists; NIL, otherwise.

From here on, t and A are the same physical array. */

9 for i = 1 . . . r do
10 if pred[i] = NIL then t[i]← i; else t[i]← max(B[pred[i]] + 1, i);

/* Compute the t−1
array, using the memory space of array A. t−1[i] is the largest

j, such that the effective region of LSUS
k
j starts on position i, if such j

exists; otherwise, NIL. From here on, t−1
and A are the same physical array. */

11 for i = r down to1 do
12 if t−1[t[i]] = NIL then t−1[t[i]]← i;
13 if i < t[i] then t−1[i]← NIL; // Enable us to update this place in the future when

needed.

/* Compute SLS array using the memory space of array A. SLS [i] = j, such that LSUS
k
j

is the rightmost SLS
k
i , if SLS

k
i exists; NIL, otherwise. From here on, SLS and A

are the same physical array. */

14 SLS [1]← 1;
15 for i = 2 . . . B[r] do SLS [i]← max(SLS [i− 1], t−1[i]);

14

Algorithm 4: Finding SUS (exact or approximate)
Input : Integer arraysA andB, each of sizen. (1)A[i] = j, such thatLSUS

k
j is the rightmostSLS k

i , if SLS k
i exists;

otherwise,A[i] = NIL. (2)B[i] is the ending position ofLSUS
k
i , if LSUS

k
i exists; otherwise,B[i] = NIL.

Output : Each(A[i], B[i]) pair represents the start and ending positions ofSUS
k
i .

1 for i = n down to1 do
2 if B[i] 6= NIL then
3 z ← i+B[i]− 1; // The rightmost position covered by at least one k-mismatch

LSUS.

4 break;

5 if z < n then
6 for i = z + 1 . . . n do
7 B[i]← NIL ; // Positions not covered by any k-mismatch LSUS.

8 for i = z down to1 do
9 B[i]← B[A[i]] ; // The ending position of SLS

k
i .

/* By this point, S
[

A[i]..B[i]
]

= SLS
k
i , if SLS

k
i exists; otherwise A[i] = B[i] = NIL.

Note that SUS
k
1 = SLS

k
1 = S

[

A[1]..B[1]
]

, which must be existing and has been

computed.

Next, we compute SUS
k
i for all i ≥ 2. */

10 for i = 2 . . . n do
11 if A[i] = B[i] = NIL then
12 A[i]← A[i− 1]; B[i]← B[i− 1] + 1 ; // SUS

k
i = SUS

k
i−1 S[i]

13 else ifB[i− 1] = i− 1 andB[i− 1]−A[i− 1] + 2 < B[i]−A[i] + 1 then
14 A[i]← A[i− 1]; B[i]← B[i− 1] + 1 ; // SUS

k
i = SUS

k
i−1 S[i]

/* Otherwise, do nothing. SUS
k
i = SLS

k
i . */

15

	 An In-place Framework for Exact and ApproximateShortest Unique Substring Queries
	1 Introduction
	1.1 Prior work and our contribution

	2 Preparation
	3 The High-Level Picture
	4 Finding k-mismatch LSUS
	4.1 Finding exact LSUS (k=0)
	4.2 Finding approximate LSUS (k 1)

	5 Finding k-mismatch SLS
	6 Finding k-mismatch SUS
	7 Conclusion

