Skip to main content

Inferring Strings from Full Abelian Periods

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

Strings uv are said to be Abelian equivalent if u is a permutation of the characters appearing in v. A string w is said to have a full Abelian period p if \(w = w_1 \cdots w_k\), where all \(w_i\)’s are of length p each and are all Abelian equivalent. This paper studies reverse-engineering problems on full Abelian periods. Given a positive integer n and a set D of divisors of n, we show how to compute in O(n) time the lexicographically smallest string of length n which has all elements of D as its full Abelian periods and has the minimum number of full Abelian periods not in D. Moreover, we give an algorithm to enumerate all such strings in amortized constant time per output after O(n)-time preprocessing. Also, we show how to enumerate the strings which have all elements of D as its full Abelian periods in amortized constant time per output after O(n)-time preprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  2. Blanchet-Sadri, F., Simmons, S., Tebbe, A., Veprauskas, A.: Abelian periods, partial words, and an extension of a theorem of Fine and Wilf. RAIRO - Theor. Inf. Appl. 47(3), 215–234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: a novel algorithm. J. Discrete Algorithms 28, 9–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for Abelian periods. Bull. EATCS 89, 167–170 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J., Radoszewski, J., Rytter, W., Tyczynski, W., Walen, T.: A note on efficient computation of all Abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fici, G., Lecroq, T., Lefebvre, A., Élise Prieur-Gaston, Smyth, W.F.: Quasi-linear time computation of the Abelian periods of a word. In: PSC 2012, pp. 103–110 (2012)

    Google Scholar 

  7. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E.: Computing Abelian periods in words. In: PSC 2011, pp. 184–196 (2011)

    Google Scholar 

  8. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gawrychowski, P., Jeż, A., Jeż, Ł.: Validating the Knuth-Morris-Pratt failure function, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)

    Article  MATH  Google Scholar 

  10. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for Abelian periods in words and greatest common divisor queries. In: STACS 2013, pp. 245–256 (2013)

    Google Scholar 

  12. Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library, Cambridge (1997)

    Book  MATH  Google Scholar 

  14. Nakashima, Y., Okabe, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from Lyndon factorization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 565–576. Springer, Heidelberg (2014)

    Google Scholar 

  15. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MATH  Google Scholar 

  16. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discrete Algorithms 32, 14–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Takaoka, T.: An \(O\)(1) time algorithm for generating multiset permutations. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 237–246. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Williams, A.: Loopless generation of multiset permutations using a constant number of variables by prefix shifts. In: SODA 2009, pp. 987–996 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro I. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishida, M., I., T., Inenaga, S., Bannai, H., Takeda, M. (2015). Inferring Strings from Full Abelian Periods. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics