Skip to main content

The Design of Voting Device Based on DNA Strand Displacement Reaction

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1913 Accesses

Abstract

DNA strand displacement reaction (DSDR) has become a significant issue in DNA computing in recent years. The voting device has been playing an important role in some occasions. A 4-people voting device was designed based on DSDR in this paper. The process of DSDR is programmed and simulated in visual DSD. The simulated results demonstrate that the molecular model of voting device is feasible and reliable, which has wide prospects in complicated molecular logic circuits study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., Oxford (2010)

    Book  MATH  Google Scholar 

  2. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  4. Carlson, R.: The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091–1094 (2009)

    Article  Google Scholar 

  5. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr, A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

    Article  Google Scholar 

  6. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008)

    Article  Google Scholar 

  7. Gothelf, K.V., LaBean, T.H.: DNA-programmed assembly of nanostructures. Org. Biomol. Chem. 3, 4023–4037 (2005)

    Article  Google Scholar 

  8. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  9. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  10. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Srinivas, N., Ouldridge, T.E., Sulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P.K., Winfree, E.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41(22), 10641–10658 (2013)

    Article  Google Scholar 

  12. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  14. Soloveichik, D., Seelig, G., Winfree, E.: Proceedings of the National Academy of Sciences USA, vol. 107, pp. 5393–53989 (2010)

    Google Scholar 

  15. Phillips, A., Cardelli, L.: J. Royal Soc. Interface 6, S419–S436 (2009)

    Article  Google Scholar 

  16. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strateg. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  17. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  18. Eckhoff, G., Codrea, V., Ellington, A.D., Chen, X.: J. Syst. Chem. 1, 13 (2010)

    Article  Google Scholar 

  19. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA Computing. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, J.S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Nature 465, 206–210 (2010)

    Article  Google Scholar 

  21. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  22. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Gaber, R., Lebar, T., Majerle, A., Ster, B., Dobnikar, A., Bencina, M., Jerala, R.: Designable DNA-binding domain enable construction of logic circuit in mammalian cells. Nat. Chem. Biol. 10(3), 203–208 (2014)

    Article  Google Scholar 

  25. Zhang, Z., Li, J., Pan, L., Ye, Y., Zeng, X., Song, T., Zhang, X., Wang, E.: A novel visualization of DNA sequences, reflecting GC-content. Match Commun. Math. Comput. Chem. 72(2), 533–550 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with weights. Inf. Sci. 278, 423–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Liu, Y., Luo, B., Pan, L.: Computational power of tissue P systems for generating control languages. Inf. Sci. 278, 285–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015). doi:10.1109/TNNLS.2015.2396940

    Article  MathSciNet  Google Scholar 

  30. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9(10), e108856 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the NSFC (Nos. U1304620, 61472372, 61272022), Innovation Scientists and Technicians Troop Construction Projects of Henan (Grant No. 124200510017), and Innovation Scientists and Technicians Troop Construction Projects of Zhengzhou (Grant No. 131PLJRC648), Basic and Frontier technologies Research Program of Henan Province (132300410183), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Sun, Z., Cai, Z., Wang, Y., Cui, G. (2015). The Design of Voting Device Based on DNA Strand Displacement Reaction. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics