Skip to main content

Tensorial Biometric Signal Recognition Based on Feed Forward Neural Networks with Random Weights

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1874 Accesses

Abstract

Most biometric signals are naturally multi-dimensional objects, which are formally known as tensors. How to classify this kind of data is an important topic for both pattern recognition and machine learning. Commonly, these biometric signals are often converted into vectors in the process of recognition. However, the vectorization usually leads to the distortion of the potential spatial structure of the original data and high computational burden. To solve this problem, in this paper, a novel classifier as a tensor extension of neural networks with random weights (NNRW) for tensorial data recognition is introduced. Due to the proposed solution can classify tensorial data directly without vectorizing them, the intrinsic structure information of the input data can be reserved. Moreover, compared with the traditional NNRW, much fewer parameters need to be calculated through the proposed tensor based classifier. Extensive experiments are carried out on different databases, and the experiment results are compared against state-of-the-art techniques. It is demonstrated that the new tensor based classifier can get better recognition performance with an extremely fast learning speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Law, M.H.C., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 377–391 (2006)

    Article  Google Scholar 

  2. Liu, C., Xu, W., Wu, Q.: TKPCA: tensorial kernel principal component analysis for action recognition. Math. Problems Eng. Article ID: 816836 (2013)

    Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Krigman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  5. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  6. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. Adv. Neural Inf. Process. Syst. 4(4), 499–506 (2005)

    Google Scholar 

  7. Er, M.J., Wu, S., Lu, J., Toh, H.L.: Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Netw. 13(3), 697–710 (2002)

    Article  Google Scholar 

  8. Qin, J., He, Z.S.: A SVM face recognition method based on gabor-featured key points. In: Proceedings 4th IEEE Conference on Machine Learning and Cybernetics, pp. 5144–5149 (2005)

    Google Scholar 

  9. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008)

    Article  Google Scholar 

  10. Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Multilinear discriminant analysis for face recognition. IEEE Trans. Image Process. 16(1), 212–220 (2007)

    Article  MathSciNet  Google Scholar 

  11. Tao, D., Li, X., Wu, X., Maybank, S.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  12. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Advances in Neural Information Processing Systems, pp. 499–506 (2005)

    Google Scholar 

  13. Tao, D., Li, X., Wu, X., Hu, W., Maybank, S.J.: Supervised tensor learning. Knowl. Inf. Syst. 13(1), 1–42 (2007)

    Article  Google Scholar 

  14. Zhang, F., Qi, L., Chen, E.: Extended extreme learning machine for biometric signal classification. J. Comput. Theor. Nanosci. 12(7), 1247–1251 (2015)

    Article  Google Scholar 

  15. Song, F., Zhang, D., Mei, D., Guo, Z.: A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(6), 1599–1606 (2007)

    Article  Google Scholar 

  16. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  17. Wang, S.J., Zhou, C.G., Fu, X.: Fusion tensor subspace transformation framework. PLoS One 8(7), e66647 (2013)

    Article  Google Scholar 

  18. Lu, J., Zhao, J., Cao, F.: Extended feed forward neural networks with random weights for face recognition. Neurocomputing 136, 96–102 (2014)

    Article  Google Scholar 

  19. Tyukin, I., Prokhorov, D.: Feasibility of random basis function approximators for modeling and control (2009). arXiv:0905.0677

  20. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-\((R_1, R_2, \cdots, R_N)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmidt, W.F., Kraaijveld, M., Duin, R.P.W.: Feed forward neural networks with random weights. In: Proceedings 11th IAPR International Conference on Pattern Recognition, Conference B: Pattern Recognition Methodology and Systems, vol. II, pp. 1–4. IEEE (1992)

    Google Scholar 

  23. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.: The FERET evaluation method for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  24. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The human ID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Qin, A. (2015). Tensorial Biometric Signal Recognition Based on Feed Forward Neural Networks with Random Weights. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics