Skip to main content

Application of DNA Self-assembly for Maximum Matching Problem

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1875 Accesses

Abstract

DNA tile self-assembly have been demonstrated to be used to solve graph theory or combinatorial optimization problem because of its high-density storage and huge-scale parallel computing ability. In this paper, tile self-assembly have been shown to be used for solving the maximum matching problem by mainly constructing four sub-systems which are seed configuration system, nondeterministic guess system, verification system and output system. These systems can be used to probabilistically get the feasible solution of the problem. The model can successfully perform the maximum matching problem in polynomial time with distinct tile types, parallel and at very low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Winfree, E., Liu, F.R., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  3. Winfree, E., Eng, T., Rozenberg, G.: String tile models for DNA computing by self-assembly. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 63–88. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. Dissertation, California Institute of Technology (1998)

    Google Scholar 

  5. Winfree, E., Liu, F., Wenzler, L.A.: Design and self-assembly of 2D DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  6. Seeman, N.C.: DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998)

    Article  Google Scholar 

  7. Gehani, A., LaBean, T.H., Reif, J.H.: DNA-based cryptography. In: 5th DIMACS Workshop on DNA Based Computers. MIT (1999)

    Google Scholar 

  8. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)

    Article  Google Scholar 

  9. Mao, C., LaBean, T.H., Reif, J.H.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  10. Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. PNAS 99, 12577–12582 (2002)

    Article  MathSciNet  Google Scholar 

  11. Carbone, A., Seeman, N.C.: Molecular tiling and DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 61–83. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  13. Brun, Y.: Arithmetic computation in the tile assembly model: addition and multiplication. Theor. Comput. Sci. 378(1), 17–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X.C., Wang, Y.F., Chen, Z.H.: Arithmetic computation using self-assembly of DNA tiles: subtraction and division. Prog. Nat. Sci. 19(3), 377–388 (2009)

    Article  MathSciNet  Google Scholar 

  15. Lin, M.Q., Xu, J., Zhang, D.F.: 3D DNA self-assembly model for graph vertex coloring. J. Comput. Theor. Nanosci. 7(1), 246–253 (2010)

    Article  Google Scholar 

  16. Pan, L.Q., Xu, J., Liu, Y.C.: A surface-based DNA algorithm for the minimal vertex problem. Prog. Nat. Sci. 13, 81–84 (2003)

    MathSciNet  Google Scholar 

  17. Pan, L.Q., Liu, G.W., Xu, J.: Solid phase based DNA solution of the coloring problem. Prog. Nat. Sci. 14, 104–107 (2004)

    MathSciNet  Google Scholar 

  18. Liu, W.B., Gao, L., Wang, S.D.: A surface-based DNA algorithm for maximal matching problem. Acta Electronica Sin. 31(10), 1496–1500 (2003)

    Google Scholar 

  19. Barish, R., Rothemund, P., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  20. Wang, H.: Proving theorems by pattern recognition I. Bell Syst. Tech. J. 40, 1–42 (1961)

    Article  Google Scholar 

  21. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. Nanobiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  22. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  23. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  24. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  26. Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

  27. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9, e108856 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support for the work from Chinese National Natural Science Foundation (61379059, 61472293), the Fundamental Research Funds for the Central Universities (CZZ13003, CZQ12006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Qiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H., Qiang, X., Zhang, K. (2015). Application of DNA Self-assembly for Maximum Matching Problem. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics