Skip to main content

Discrete Particle Swarm Optimization Algorithm for Solving Graph Coloring Problem

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

Abstract

Graph coloring problem is a well-known NP-complete problem in graph theory. Because GCP often finds its applications to various engineering fields, it is very important to find a feasible solution quickly. In this paper, we present a novel discrete particle swarm optimization algorithm to solve the GCP. In order to apply originally particle swarm optimization algorithm to discrete problem, we design and redefine the crucial position and velocity operators on discrete state space. Moreover, the performance of our algorithm is compared with other published method using 30 DIMACS benchmark graphs. The comparison result shows that our algorithm is more competitive with less chromatic numbers and less computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco, L., Caramia, M., Olmo, P.D.: Solving a preemptive project scheduling problem with coloring technique. In: Weglarz, J. (ed.) Project Scheduling Recent Models, Algorithms and Applications, pp. 135–145. Kluwer Academic Publishers, US (1998)

    Google Scholar 

  2. Werra, D.D.: An introduction to timetabling. Eur. J. Oper. Res. 19, 151–162 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kannan, S., Proebsting, T.: Register allocation in structured programs. J. Algorithms 29, 223–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Smith, K., Palaniswami, M.: Static and dynamic channel assignment using neural networks. IEEE J. Select. Areas Commun. 15, 238–249 (1997)

    Article  Google Scholar 

  5. Maitra, T., Pal, A.J.: Noise reduction in VLSI circuits using modied GA based graph coloring. Int. J. Control Autom. 3(2), 37–44 (2010)

    Google Scholar 

  6. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  7. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. National Bureau Stan. 84, 489–505 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brlaz, D.: New methods to color vertices of a graph. Commun. ACM 22, 251–256 (1979)

    Article  MathSciNet  Google Scholar 

  9. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  10. Mouhoub, M.: A hierarchical parallel genetic approach for the graph coloring problem. Appl. Intell. 39(3), 510–528 (2013)

    Article  Google Scholar 

  11. Hong, B.: Generic algorithm of color planar graph. J. Guizhou Univ. (Nat Seil) 11(16), 232–297 (1999)

    Google Scholar 

  12. Wang, X.H., Zhao, S.M.: Ant algorithms for solving graph coloring. J. Inner Mongolia Agric. Univ. 9(26), 79–82 (2005)

    Google Scholar 

  13. Salari, E., Eshghi, K.: An ACO algorithm for graph coloring problem. IEEE Serv. Center 1, 20–21 (2005)

    MATH  Google Scholar 

  14. Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  17. Wang, X.H., Wang, Z.O., Qiao, Q.L.: Artificial neural network with transient chaos for four-coloring map problems and k-colorability problems. Syst. Eng. Theory Pract. 5, 92–96 (2002)

    Google Scholar 

  18. Kumar, P., Singh, A.K., Srivastava, A.K.: A novel optimal capacitor placement algorithm using Nelder-Mead PSO. Int. J. Bio-Inspired Comput. 6(4), 290–302 (2014)

    Article  Google Scholar 

  19. Ram, G., Mandal, D., Kar, R., Ghoshal, S.P.: Optimal design of non-uniform circular antenna arrays using PSO with wavelet mutation. Int. J. Bio-Inspired Comput. 6(4), 424–433 (2014)

    Article  Google Scholar 

  20. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. (2014). doi:10.1109/TEVC.2014.2378512

  21. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  22. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  23. Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61402187, 61472293, 61273225, 61403287 and 31201121), and the Natural Science Foundation of Hubei Province (Grant No. 2015CFB335), and the Youth Foundation of Wuhan University of Science and Technology (Grant No. 2015xz017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, K., Zhu, W., Liu, J., He, J. (2015). Discrete Particle Swarm Optimization Algorithm for Solving Graph Coloring Problem. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics