Skip to main content

Parallel Hybrid Genetic Algorithm for Maximum Clique Problem on OpenCL

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

Abstract

The maximum clique problem is to find the maximum sized clique of pairwise adjacent vertices in a given graph, which is a NP-Complete problem. In this paper, an effective parallel hybrid genetic algorithm is proposed, which consists of genetic algorithm and a local optimization strategy for solving maximum clique problem. In this algorithm, selection, crossover, mutation, fitness evaluation and replacement operators are implemented parallel on OpenCL. In addition, we have tested our algorithm by using a set of benchmark instances from the DIMACS graphs. The comparison results shows that the implementation on GPU provide better performance that CPU, even when the benchmark graphs become more large and complicate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  2. Wang, X., Miao, Y.: GAEM: a hybrid algorithm incorporating GA with EM for planted edited motif finding problem. Curr. Bioinform. 9(5), 463–469 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ostergard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. Sixth Twente Workshop Graphs Comb. Optim. 3, 197–207 (2002)

    MathSciNet  Google Scholar 

  4. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  5. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  6. Resende, M., Feo, T.: A GRASP for satisfiability. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Challenge, vol. 26, pp. 499–520. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  7. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  8. Battiti, R., Mascia, F.: Reactive and dynamic local search for max-clique: engineering effective building blocks. Comput. Oper. Res. 37(3), 534–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bui, T.N., Eppley, P.H.: A hybrid genetic algorithm for the maximum clique problem. In: Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, pp. 478–484 (1995)

    Google Scholar 

  11. Marchiori, E.: A simple heuristic based genetic algorithm for the maximum clique problem. In: Proceedings of the ACM Symposium on Applied Computing, pp. 366–373 (1998)

    Google Scholar 

  12. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  13. Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

  14. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. (2014). doi:10.1109/TEVC.2014.2378512

  15. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  16. Du, P., Weber, R., Luszczek, P.: From CUDA to OpenCL: towards a performance-portable solution for multi-platform GPU programming. Parallel Comput. 38(8), 391–407 (2011)

    Article  Google Scholar 

  17. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  18. Shimobaba, T., Ito, T., Masuda, N.: Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL. Opt. Express 18(10), 9955–9960 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61472293, 61379059, 61273225, 61403287 and 31201121). Supported by the Natural Science Foundation of Hubei Province, China (No. 2015CFB335), and Youth Foundation of Wuhan University of Science and Technology (No. 2015xz017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Zhang, K., Yang, S., He, J. (2015). Parallel Hybrid Genetic Algorithm for Maximum Clique Problem on OpenCL. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics