Skip to main content

Chaos Multi-objective Particle Swarm Optimization Based on Efficient Non-dominated Sorting

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1882 Accesses

Abstract

In order to reduce computational complexity of multiobjective particle swarm optimization algorithm in non-dominated sort, and make the global convergence of the algorithm more quickly in processing continuous problems, a chaos multi-objective particle swarm optimization using efficient non-dominated sort (CMOPSO-ENS) is proposed. In this algorithm, a solution to be assigned to a front needs to be compared only with those solutions that have already been assigned to a front, thereby avoiding many unnecessary comparisons. What’s more, the chaotic map is used to optimize globe best solution in the algorithm. Based on the ergodicity, stochastic property and regularity of chaos, a new superior individual is reproduced by chaotic maps in the current global best individual, and a stochastic selected individual in the current population is replaced by the new superior individual. The algorithm embedded into chaotic maps quickens the evolution process, and improves the abilities of seeking the global excellent solutions. Several benchmark functions are used to test the search capability of the improved algorithm. The simulation results demonstrate that the convergence speed of the proposed CMOPSO-ENS algorithm is superior to original MOPSO algorithms, especially in solving problems with convex and piecewise Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer Academic Publishers, Norwell (2002)

    Book  MATH  Google Scholar 

  2. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  5. Lu, Y., Yan, D., Levy, D.: Friction coefficient estimation in servo systems using neural dynamic programming inspired particle swarm search. Appl. Intell. 43(1), 1–14 (2015)

    Article  Google Scholar 

  6. Yang, X., Liu, P.: Tailoring fuzzy C-means clustering algorithm for big data using random sampling and particle swarm optimization. Int. J. Database Theory Appl. 8(3), 191–202 (2015)

    Article  Google Scholar 

  7. Fan, X., Fang, X., Jiang, C.: Research on web service selection based on cooperative evolution. Expert Syst. Appl. 38(8), 9736–9743 (2011)

    Article  Google Scholar 

  8. Rachid, E., Francesco, D.P., Habib, B.A.S., Vijay, K.: Evolutionary forwarding games in delay tolerant networks: equilibria, mechanism design and stochastic approximation. Comput. Netw. 57(4), 1003–1018 (2013)

    Article  Google Scholar 

  9. Moore, J., Chapman, R.: Application of Particle Swarm to Multi-objective Optimization Department of Computer Science and Software Engineering (1999)

    Google Scholar 

  10. Hu, X., Eberhart, R.C.: Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: Proceeding of Congress Evolutionary Computation, vol. 4(2), pp. 1617–1681 (2002)

    Google Scholar 

  11. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handing multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  12. Liang, J.J., Suganthan, P.N.: Dynamic multiswarm particle swarm optimizer. In: Proceedings of the Swarm Intelligent Symposium, vol. 6(5), pp. 1–6 (2005)

    Google Scholar 

  13. Higasshi, N., Iba, H.: Particle swarm optimization with gaussian mutation. In: Proceedings of the Congress on Evolutionary Computation, 7279 (2003)

    Google Scholar 

  14. Mahfouf, M., Chen, M.-Y., Linkens, D.A.: Adaptive weighted particle swarm optimisation for multi-objective optimal design of alloy steels. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 762–771. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Wang, X., Miao, Y.: GAEM: a hybrid algorithm incorporating GA with EM for planted edited motif finding problem. Curr. Bioinform. 9(5), 463–469 (2014)

    Article  MathSciNet  Google Scholar 

  16. Goh, C.K., Tan, K.C., Liu, D.S.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202(1), 22–54 (2010)

    Article  MATH  Google Scholar 

  17. Ho, S.L., Yang, J., Yang, S., Bai, Y.: Integration of directed searches in particle swarm optimization for multi-objective optimization. IEEE Trans. Magn. 51(3), 1–4 (2015)

    Google Scholar 

  18. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, H., Yen, G.G.: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans. Evol. Comput. 19(1), 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45(7), 1353–1362 (2015)

    Article  Google Scholar 

  21. Sun, J., Yin, Q., Shen, Y.: Compound synchronization for four chaotic systems of integer order and fractional order. Europhys. Lett. 106(4), 40005–40010 (2014)

    Article  Google Scholar 

  22. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strateg. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  23. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  24. Sun, J., Shen, Y., Zhang, G.: Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control. chaos: an interdisciplinary. J. NonlinearSci. 22(4), 043107–043116 (2012)

    MATH  Google Scholar 

  25. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  26. Walid, E., Nesrine, B., Ajith, A., Adel, M.A.: The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization. J. Intell. Fuzzy Syst. 27(1), 515–525 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Aote, S.S., Raghuwanshi, M.M., Malik, L.: A brief review on particle swarm optimization: limitations & future directions. Int. J. Comput. Sci. Eng. 2(5), 196–200 (2013)

    Google Scholar 

  28. Sedighizadeh, D., Masehian, E.: Particle swarm optimization methods, taxonomy and applications. Int. J. Comput. Theory Eng. 1(5), 486–502 (2009)

    Article  Google Scholar 

  29. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  30. Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim. 39(1), 4968 (2007)

    MathSciNet  Google Scholar 

  31. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  32. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput., 1–18 (2014)

    Google Scholar 

  33. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test functions. Evol. Comput. 7(3), 205–230 (1999)

    Article  MathSciNet  Google Scholar 

  34. Zitzler, E., Deb, K., Thiele, L.: Comparison of multi-objective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  35. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  36. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  37. Zhang, X., Pan, L., Paun, A.: On the Universality of Axon P Systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

  38. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One, e108856 (2014)

    Google Scholar 

Download references

Acknowledgments

The work for this paper was supported by the National Natural Science Foundation of China (Nos. 6147237161472372), Basic and Frontier Technology Research Program of Henan Province (Grant Nos. 142300413214), Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT019), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012), and Young Backbone Teachers Project of Henan province (Grant No. 2013GGJS-106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhao Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Wang, X., Niu, Y., Cui, G. (2015). Chaos Multi-objective Particle Swarm Optimization Based on Efficient Non-dominated Sorting. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics