Skip to main content

Quantum Information Splitting Based on Entangled States

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XIX

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9380))

  • 461 Accesses

Abstract

Two quantum information splitting protocols are proposed, that one is based on Bell states and another is based on cluster states. Two protocols provide two different ways to complete the process of quantum information splitting. The measurement results of Alice represent the secret information in the first protocol which is (n,n) protocol. The secret information is encoded into Pauli operations in the second protocol which is (2, 2) protocol. The original secret information is recovered when all participants are honest cooperation according to the principle of quantum information splitting. Two protocols take full advantages of the entanglement properties of Bell states and cluster states in different basis to check eavesdropping, that are secure against the intercept and resend attack and entangled ancilla particles attack. We also analyse the efficiency of these two protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595–604 (2014)

    Article  Google Scholar 

  2. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  Google Scholar 

  5. Liu, Z.H., et al.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quant. Inf. Process 12, 587–599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chi, D.P., Choi, J.W., Kim, J.S., Kim, T., Lee, S.: Quantum states for perfectly secure secret sharing. Phys. Rev. A 78, 012351-1–012351-4 (2008)

    Article  Google Scholar 

  7. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quant. Inf. Process 10, 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quant. Inf. Process 11, 563–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum information splitting of an arbitrary three-qubit state by using cluster state and Bell-states. Commun. Theor. Phys. 55, 421–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quant. Inf. Process 12, 773–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of a two-qubit Bell state using a four-qubit entangled state. Chin. Phys. C 39, 043103-1–043103-5 (2015)

    Google Scholar 

  12. Kaushik, N., Goutam, P.: Quantum Information splitting using a pair of GHZ states. Quant. Inf. Comput. 15, 1041–1047 (2015)

    MathSciNet  Google Scholar 

  13. Sreraman, M., Prasanta, K.P.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333-1–062333-5 (2008)

    Google Scholar 

  14. Richard, C., Daniel, G., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  Google Scholar 

  15. Lau, H.K., Christian, W.B.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313-1–042313-10 (2013)

    Article  Google Scholar 

  16. Inaba, K., Tokunaga, Y., Tamaki, K., Igeta, K., Yamashita, M.: High-fidelity cluster state generation for ultracold atoms in an optical lattice. Phys. Rev. Lett. 112, 110501-1–110501-5 (2014)

    Article  Google Scholar 

  17. Aguilar, G.H., Kolb, T., Cavalcanti, D., Aolita, L., Chaves, R., Walborn, S.P., Ribeiro, P.H.S.: Linear-optical simulation of the cooling of a cluster-state hamiltonian system. Phys. Rev. Lett. 112, 160501-1–160501-5 (2014)

    Article  Google Scholar 

  18. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309-1–042309-17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Qauntum secret with gubit states. Phys. Rev. A 82, 062315-1–062315-11 (2010)

    Article  Google Scholar 

  20. Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303-1–042303-7 (2012)

    Google Scholar 

  21. Spengler, C., Kraus, B.: Graph-state formalism for mutually unbiased bases. Phys. Rev. A 88, 052323-1–052323-21 (2013)

    Article  Google Scholar 

  22. Qian, Y.J., Shen, Z., He, G.Q., Zeng, G.H.: Quantum-cryptography network via continuous-variable graph states. Phys. Rev. A 86, 052333-1–052333-8 (2012)

    Article  Google Scholar 

  23. Scherpelz, P., Resch, R., Berryrieser, D., Lynn, T.W.: Entanglement-secured single-qubit quantum secret sharing. Phys. Rev. A 84, 032303-1–032303-8 (2011)

    Article  Google Scholar 

  24. Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Generation of cluster states. Phys. Rev. A 73, 033818-1–033818-6 (2006)

    Google Scholar 

  25. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  26. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308-1–012308-8 (2001)

    Article  Google Scholar 

  27. Walther, P., et al.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  Google Scholar 

  28. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  Google Scholar 

  29. Alexander, M.G., Wagenknecht, C., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403-1–080403-4 (2008)

    Google Scholar 

  30. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based ob entanglement swapping. Phys. Rev. A 72, 022303-1–022303-4 (2005)

    Google Scholar 

  31. Li, X., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307-1–052307-5 (2004)

    Google Scholar 

  32. Quan, D.X., Zhao, N.: New quantum seret sharing protocol based ob entanglement swapping. J. Optoelectron. Laser 22, 71–74 (2011)

    Google Scholar 

  33. Sun, Y., Du, J.Z., Qin, S.J., et al.: Two-way authentication quantum secret sharing. J. Phys. 57, 4689–4694 (2008)

    MATH  Google Scholar 

  34. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302-1–032302-3 (2002)

    Article  Google Scholar 

  35. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  Google Scholar 

  36. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Efficient multiparty quantum secret sharing with GHZ states. Chin. Phys. Lett. 23, 1084-1–1087-3 (2006)

    Google Scholar 

  37. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The research is funded by National Natural Science Foundation of China, under Grant Nos. 61003258, 61472165, and Science and Technology Planning Project of Guangdong Province, China, under Grant No. 2013B010401018, and Natural Science Foundation of Guangdong Province, China, under Grant No. 2014A030310245, and Guangzhou Zhujiang Science and Technology Future Fellow Fund, under Grant No. 2012J2200094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, X., Li, P., Zhang, X., Feng, Z. (2015). Quantum Information Splitting Based on Entangled States. In: Nguyen, N., Kowalczyk, R., Xhafa, F. (eds) Transactions on Computational Collective Intelligence XIX . Lecture Notes in Computer Science(), vol 9380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49017-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49017-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49016-7

  • Online ISBN: 978-3-662-49017-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics