Abstract
With sensitive to ground scatterers, SAR coherence image can be used for the detection of surface changes and the classification of land-use cover. From a new point of view, this paper synthetically used the change information of high resolution SAR coherence image, and spectral information from optical image, based on the PCA, to obtain the fusion image. And finally land-use and cover classification of the fusion image and test results prove that it is effective and provides a valuable reference.
Lei Pang, Beijing Natural Science Foundation (No. 8154043), Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation (20131207NY) and Research Fund for the Doctoral Program of Beijing University of Civil Engineering and Architecture (Z12069). And this research work achieved in and supported by the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geoinformation (201327, Z13152).
Similar content being viewed by others
References
Lohman, R.B., Simons, M.: Some thoughts on the use of InSAR data to constrain models of surface deformation: noise structure and data downsampling. Geochem. Geophys. Geosyst. 6(1) (2005). Q01007. doi:10.1029/2004GC000841
Thiele, A., Cadario, E., Schulz, K., et al.: Building recognition from multi-aspect high-resolution InSAR data in urban areas. IEEE Trans. Geosci. Remote Sens. 45(11), 3583–3593 (2007)
Li, Z., Bao, Z., Li, H., et al.: Image autocoregistration and InSAR interferogram estimation using joint subspace projection. IEEE Trans. Geosci. Remote Sens. 44(2), 288–297 (2006)
Hyde, P., Dubayah, R., Walker, W., et al.: Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens. Environ. 102(1), 63–73 (2006)
Hooper, A.: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 35(16) (2008). L16302. doi:10.1029/2008GL034654
Ferretti, A., Prati, C., Rocca, F.: Multibaseline InSAR DEM reconstruction: the wavelet approach. IEEE Trans. Geosci. Remote Sens. 37(2), 705–715 (1999)
Marinelli, L., Michel, R., Beaudoin, A., et al.: Flood mapping using ERS tandem coherence image: a case study in Southern France. In: ESA SP, pp. 531–536 (1997)
Ouchi, K., Tamaki, S., Yaguchi, H., et al.: Ship detection based on coherence images derived from cross correlation of multilook SAR images. IEEE Geosci. Remote Sens. Lett. 1(3), 184–187 (2004)
Moeremans, B., Dautrebande, S.: Soil moisture evaluation by means of multi-temporal ERS SAR PRI images and interferometric coherence. J. Hydrol. 234(3), 162–169 (2000)
Gaveau, D.L.A., Balzter, H., Plummer, S.: Forest woody biomass classification with satellite-based radar coherence over 900 000 km2 in Central Siberia. For. Ecol. Manag. 174(1), 65–75 (2003)
Damini, A., Mantle, V., Davidson, G.: A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence. In: 2013 IEEE Radar Conference (RADAR), pp. 1–5 (2013)
Dou, X.Y., Han, L.G., Wang, E.L., et al.: A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence. Appl. Geophys. 11(2), 179–185 (2014)
He, C., Liu, Q., Li, H., et al.: Multimodal medical image fusion based on IHS and PCA. Proc. Eng. 7, 280–285 (2010)
Poulain, V., Inglada, J., Spigai, M., et al.: High-resolution optical and SAR image fusion for building database updating. IEEE Trans. Geosci. Remote Sens. 49(8), 2900–2910 (2011)
Poulain, V., Inglada, J., Spigai, M., et al.: Fusion of high resolution optical and SAR images with vector data bases for change detection. In: 2009 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2009, vol. 4, pp. IV-956–IV-959. IEEE (2009)
Zhang, J.: Multi-source remote sensing data fusion: status and trends. Int. J. Image Data Fusion 1(1), 5–24 (2010)
McNairn, H., Champagne, C., Shang, J., et al.: Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 64(5), 434–449 (2009)
Yang, S., Wang, M., Lu, Y.X., et al.: Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN. Sig. Process. 89(12), 2596–2608 (2009)
Amarsaikhan, D., Blotevogel, H.H., Van Genderen, J.L., et al.: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. Int. J. Image Data Fusion 1(1), 83–97 (2010)
Weng, Q., Lu, D.: A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 10(1), 68–83 (2008)
Snyder, W.C., Wan, Z., Zhang, Y., et al.: Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 19(14), 2753–2774 (1998)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ai, L., Pang, L., Liu, H., Sun, M., He, S. (2016). High Resolution SAR Coherence and Optical Fused Images Applied in Land-Use Cover Classification. In: Bian, F., Xie, Y. (eds) Geo-Informatics in Resource Management and Sustainable Ecosystem. GRMSE 2015. Communications in Computer and Information Science, vol 569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49155-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-662-49155-3_47
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49154-6
Online ISBN: 978-3-662-49155-3
eBook Packages: Computer ScienceComputer Science (R0)