Skip to main content

Multiple Kernel Based Collaborative Fuzzy Clustering Algorithm

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

Abstract

Cluster is found as one of the best useful tools for data analysis, data mining, and pattern recognition. The FCM algorithm and its variants algorithms has been extensively used in problems of clustering or collaborative clustering. In this paper, we present a novel method involving multiple kernel technique and FCM for collaborative clustering problem. These method endowed with multiple kernel technique which transform implicitly the feature space of input data into a higher dimensional via a non linear map, which increases greatly possibility of linear separability of the patterns when the data structure of input patterns is non-spherical and complex. To evaluate the proposed method, we use the criteria of fuzzy silhouette, a sum of squared error and classification rate to show the performance of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://climate.weather.gc.ca/.

References

  1. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-Means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–893 (2002)

    Article  MATH  Google Scholar 

  2. Zalik, K.R.: An efficient k-means clustering algorithm. Pattern Recogn. Lett. 29, 1385–1391 (2008)

    Article  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-Means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Pedrycz, W.: Collaborative fuzzy clustering. Pattern Recogn. Lett. 23(14), 1675–1686 (2002)

    Article  MATH  Google Scholar 

  5. Pedrycz, W.: Collaborative clustering with the use of fuzzy C-Means and its quantification. Fuzzy Sets Syst. 159(18), 2399–2427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pedrycz, W.: Collaborative and knowledge based fuzzy clustering. Int. J. Innovative Comput. Inf. control 3(1), 1–12 (2007)

    MATH  Google Scholar 

  7. Coletta, L.F.S., Vendramin, L., Hruschka, E.R., Campello, R.J.G.B., Pedrycz, W.: Collaborative fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans. Fuzzy Syst. 20(3), 444–462 (2012)

    Article  Google Scholar 

  8. Pedrycz, W., Reformat, M.: Evolutionary fuzzy modeling. IEEE Trans. Fuzzy Syst. 11(5), 652–665 (2003)

    Article  Google Scholar 

  9. Zhou, J., Chen, C.L.P., Chen, L., Li, H.X.: Collaborative fuzzy clustering algorithm in distributed network environments. IEEE Trans. Fuzzy Syst. 22(6), 1443–1456 (2014)

    Article  Google Scholar 

  10. Jiang, Y., Chung, F.L., Wang, S., Deng, Z., Wang, J., Qian, P.: Collaborative fuzzy clustering from multiple weighted views. IEEE Trans. Cybern. 45(4), 688–701 (2015)

    Article  Google Scholar 

  11. Prasad, M., Li, D.L., Liu, Y.T., Siana, L., Lin, C.T., Saxena, A.: A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis. In: IEEE International Conference on Fuzzy Systems, pp. 1553–1558 (2014)

    Google Scholar 

  12. Yu, F., Tang, J., Cai, R.: Partially horizontal collaborative fuzzy C-Means. Int. J. Fuzzy Syst. 9(4), 198–204 (2007)

    MathSciNet  Google Scholar 

  13. Yu, F., Tang, J., Cai, R.: A necessary preprocessing in horizontal collaborative fuzzy clustering. In: International Conference on Granular Computing, pp. 399–404 (2007)

    Google Scholar 

  14. Yu, F., Yu, S.: Prototypes-based horizontal collaborative fuzzy clustering. In: Web Mining and Web-based Application, pp. 66–69 (2009)

    Google Scholar 

  15. Falcon, R., Depaire, B., Vanhoof, K., Abraham, A.: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering. In: ISDA International Conference, vol. 4, pp. 652–657 (2008)

    Google Scholar 

  16. Mitra, S., Banka, H., Pedrycz, W.: Roughfuzzy collaborative clustering. IEEE Trans.Syst. Man Cybern. Part B Cybern. 36(4), 795–805 (2006)

    Article  Google Scholar 

  17. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Networks 13, 780–784 (2002)

    Article  Google Scholar 

  18. Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst. 161, 522–543 (2010)

    Article  MathSciNet  Google Scholar 

  19. Sonnenburg, S., Ratsch, G., Schafer, C., Scholkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Zhanga, D.-Q., Chen, S.-C.: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32(1), 37–50 (2004)

    Article  Google Scholar 

  21. Yang, M.-S., Tsai, H.-S.: A gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)

    Article  Google Scholar 

  22. Chen, L., Chen, C.L.P., Lu, M.: A multiple-kernel fuzzy C-Means algorithm for image segmentation. Syst. Man Cybern. Part B Cybern. 41(5), 1263–1274 (2011)

    Article  Google Scholar 

  23. Huang, H., Chuang, Y.Y., Chen, C.S.: Multiple kernel fuzzy clustering. IEEE Trans. on Fuzzy Syst. 20(1), 120–134 (2011)

    Article  Google Scholar 

  24. Dang, T.H., Ngo, L.T., Pedrycz, W.: Interval type-2 fuzzy C-Means approach to collaborative clustering. In: The IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Thanh Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dang, T.H., Ngo, L.T., Pedrycz, W. (2016). Multiple Kernel Based Collaborative Fuzzy Clustering Algorithm. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics