Abstract
In this paper we report two mixed integer linear programming models to resolve the malleable jobs scheduling problem with single resource. Jobs’ release dates and deadlines are taken into account. The total amount of available resource of the system is variable at different times. Numerical experimentation is conducted to evaluate the performance variability between two introduced models. The objective of this optimization problem is to minimize the total weighted completion time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atakan, S., Lulli, G., Sen, S.: An improved mip formulation for the unit commitment problem (2015)
Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed integer programming: a progress report. The sharpest cut: The impact of Manfred Padberg and his work, MPS-SIAM Series on Optimization, vol. 4, pp. 309–326 (2004)
Blazewicz, J., Kovalyov, M.Y., Machowiak, M., Trystram, D., Weglarz, J.: Preemptable malleable task scheduling problem. IEEE Trans. Comput. 55(4), 486–490 (2006)
Blazewicz, P.D.J., Ecker, P.D.K.H., Pesch, P.D.E., Schmidt, P.D.G., Weglarz, P.D.J.: Scheduling under resource constraints. In: Scheduling Computer and Manufacturing Processes, pp. 317–365. Springer, Heidelberg (2001)
Dror, M., Stern, H.I., Lenstra, J.K.: Parallel machine scheduling: processing rates dependent on number of jobs in operation. Manage. Sci. 33(8), 1001–1009 (1987)
Dutot, P.-F., Mounié, G., Trystram, D.: Scheduling parallel tasks: approximation algorithms. Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pp. 1–26 (2004)
Fan, L., Zhang, F., Wang, G., Liu, Z.: An effective approximation algorithm for the malleable parallel task scheduling problem. J. Parallel Distrib. Comput. 72(5), 693–704 (2012)
Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Oper. Res. 55(3), 588–602 (2007)
Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. J. Comput. Syst. Sci. 78(1), 245–259 (2012)
Jedrzejowicz, P., Skakovski, A.: Population learning with differential evolution for the discrete-continuous scheduling with continuous resource discretisation. In: 2013 IEEE International Conference on Cybernetics (CYBCONF), pp. 92–97 (2013)
Lima, R.M., Grossmann, I.E.: Computational advances in solving mixed integer linear programming problems (2011)
Lodi, A.: 50 Years of Integer Programming 1958–2008. Mixed integer programming computation, pp. 619–645. Springer, Heidelberg (2010)
Nguyen, N.-Q., Yalaoui, F., Amodeo, L., Chehade, H., Toggenburger, P.: Total completion time minimization for machine scheduling problem under time windows constraints with jobs’ linear processing rate function. Journal of Scheduling, manuscript submitted for publication (2015)
Rozycki, R., Weglarz, J.: Power-aware scheduling of preemptable jobs on identical parallel processors to meet deadlines. Eur. J. Oper. Res. 218(1), 68–75 (2012)
Sadykov, R.: A dominant class of schedules for malleable jobs in the problem to minimize the total weighted completion time. Comput. Oper. Res. 39(6), 1265–1270 (2012)
Sirikum, J., Techanitisawad, A., Kachitvichyanukul, V.: A new efficient ga-benders’ decomposition method: for power generation expansion planning with emission controls. IEEE Trans. Power Syst. 22(3), 1092–1100 (2007)
Tahar, D.N., Yalaoui, F., Chu, C., Amodeo, L.: A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times. Int. J. Prod. Econ. 99(1), 63–73 (2006)
Yalaoui, F., Chu, C.: New exact method to solve the \({P_{m}}/r_{j}/\sum {C_{j}}\) schedule problem. Int. J. Prod. Econ. 100(1), 168–179 (2006)
Acknowledgments
This research has been supported by ANRT (Association Nationale de la Recherche et de la Technologie, France).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, NQ., Yalaoui, F., Amodeo, L., Chehade, H., Toggenburger, P. (2016). Solving a Malleable Jobs Scheduling Problem to Minimize Total Weighted Completion Times by Mixed Integer Linear Programming Models. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-662-49390-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49389-2
Online ISBN: 978-3-662-49390-8
eBook Packages: Computer ScienceComputer Science (R0)