Skip to main content

Tomoelastography by Multifrequency Wave Number Recovery

  • Conference paper
Bildverarbeitung für die Medizin 2016

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

In elastography mechanically excited shear waves are captured by medical ultrasound or MRI to reconstruct the elastic parameters of the underlying tissue. Current inversion algorithm use second-order derivatives for elasticity reconstruction which limits the spatial resolution of the elastic parameter maps. Here we propose a noise stable inversion method, which relies on wave number k reconstruction at different harmonic frequencies followed by their amplitude-weighted averaging prior to inversion. The algorithm is tested on abdominal and pelvic data. The resulting shear wave speed maps provide anatomical details in elastic parameter maps due to its inherent sensitivity to noise at pixel-wise resolution producing superior details to current MRE inversion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manduca A, Lake DS, Kruse SA, et al. Spatio-temporal directional filtering for improved inversion of MR elastography images. Med Image Anal. 2003;7(4):465–73.

    Article  Google Scholar 

  2. Van Houten EE, Paulsen KD, Miga MI, et al. An overlapping subzone technique for MR-based elastic property reconstruction. Magn Reson Med. 1999;42(4):779–86.

    Article  Google Scholar 

  3. Hirsch S, Guo J, Reiter R, et al. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med. 2014;71(1):267–77.

    Article  Google Scholar 

  4. Tzschätzsch H, Guo J, Dittmann F, et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves. Med Image Anal. 2016.

    Google Scholar 

  5. Barnhill E, Kennedy P, Johnson CL, et al. Real-time 4D phase unwrapping applied to magnetic resonance elastography. Magn Reson Med. 2015;73(6):2321–31.

    Article  Google Scholar 

  6. Manduca a, Oliphant TE, Dresner Ma, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.

    Article  Google Scholar 

  7. Streitberger KJ, Guo J, Tzschätzsch H, et al. High-resolution mechanical imaging of the kidney. J Biomech. 2014;47(3):639–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tzschätzsch, H., Guo, J., Dittmann, F., Braun, J., Sack, I. (2016). Tomoelastography by Multifrequency Wave Number Recovery. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2016. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49465-3_3

Download citation

Publish with us

Policies and ethics