Skip to main content

Detection and Quantification of Cytoskeletal Granules

  • Conference paper
Bildverarbeitung für die Medizin 2016

Abstract

The cytoskeleton is a dynamic scaffolding maintaining cell stability and motility. Keratin filaments form cytoskeletal networks in the cytoplasm of epithelial cells. Genetic mutations of keratin genes have been implicated in human skin diseases, such as epidermolysis bullosa simplex. Keratin network organization is severely impaired in these instances resulting in the formation of prominent granular aggregates. To gain an understanding of the pathomechanisms underlying keratin granule formation and to screen for factors affecting this process, an automated segmentation routine of keratin granules is proposed in this paper. As such, the presented method holds a lot of potential for an objective assessment of keratin organization to improve treatment of genetic keratinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strnad P, Stumptner C, Zatloukal K, et al. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol. 2008;129(6):735–49.

    Article  Google Scholar 

  2. Windoffer R, Beil M, Magin TM, et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol. 2011;194:669–78.

    Article  Google Scholar 

  3. Chamcheu J, Siddiqui I, Syed D, et al. Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys. 2011;508:123–37.

    Article  Google Scholar 

  4. Haines RL, Lane EB. Keratins and disease at a glance. J Cell Sci. 2012;125:3923–8.

    Article  Google Scholar 

  5. Herberich G, Würflinger T, Sechi A, et al. Fluorescence microscopic imaging and image analysis of the cytoskeleton. Signals Syst Comput ASILOMAR. 2010; p. 1359–63.

    Google Scholar 

  6. Lichtenstein N, Geiger B, Kam Z. Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy. Cytometry A. 2003;54 A:8–18.

    Google Scholar 

  7. Kröger C, Loschke F, Schwarz N, et al. Keratins control intercellular adhesion involving PKC-α-mediated desmoplakin phosphorylation. J Cell Biol. 2013;201(5):681–92.

    Article  Google Scholar 

  8. Zhang B, Zerubia J, Olivo-Marin JC. Gaussian approximations of fluorescence microscope point-spread function models. Appl Opt. 2007;46(10):1819–29.

    Article  Google Scholar 

  9. Branch MA, Coleman MA, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput. 1999;21:1–23.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eschweiler, D. et al. (2016). Detection and Quantification of Cytoskeletal Granules. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2016. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49465-3_46

Download citation

Publish with us

Policies and ethics