
ar
X

iv
:1

51
2.

03
24

6v
1 

 [
cs

.C
C

] 
 1

0 
D

ec
 2

01
5

New Deterministic Algorithms for Solving Parity Games∗

Matthias Mnich† Heiko Röglin† Clemens Rösner†
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Abstract

We study parity games in which one of the two players controls only a small number k of nodes
and the other player controls the n − k other nodes of the game. Our main result is a fixed-parameter

algorithm that solves bipartite parity games in time kO(
√
k)

· O(n3), and general parity games in time

(p+ k)O(
√
k)

·O(pnm), where p is the number of distinct priorities and m is the number of edges. For all
games with k = o(n) this improves the previously fastest algorithm by Jurdziński, Paterson, and Zwick
(SICOMP 2008).

We also obtain novel kernelization results and an improved deterministic algorithm for graphs with
small average degree.

1 Introduction

A parity game [5] is a two-player game of perfect information played on a directed graph G by two players,
even and odd, who move a token from node to node along the edges of G so that an infinite path is formed.
The nodes of G are partitioned into two sets V0 and V1; the even player moves if the token is at a node in V0

and the odd player moves if the token is at a node in V1. The nodes of G are labeled by a priority function

p : V → N0, and the players compete for the parity of the highest priority occurring infinitely often on the
infinite path v0, v1, v2 . . . describing a play: the even player wins if lim supi→∞ p(vi) is even, and the odd
player wins if it is odd.

The winner determination problem for parity games is the algorithmic problem to determine for a given
parity game G = (V0 ⊎ V1, E, p) and an initial node v0 ∈ V0 ∪ V1, whether the even player has a winning
strategy in the game if the token is initially placed on node v0. We say that an algorithm for this problem
solves parity games. Parity games have various applications in computer science and the theory of formal
languages and automata in particular. They are closely related to other games of infinite duration, such as
mean payoff games, discounted payoff games, and stochastic games [10]. Solving parity games is linear-time
equivalent to the model checking problem for the modal µ-calculus [19]. Hence, any parity game solver is
also a model checker for the µ-calculus (and vice versa).

Many algorithms have been suggested for solving parity games [4, 12, 20, 21], yet none of them is known to
run in polynomial time. McNaughton [15] showed that the winner determination problem belongs to the class
NP∩ coNP, and Jurdziński [10] strengthened this to UP∩ coUP. It is a long-standing open question whether
parity games can be solved in polynomial time. The fastest known deterministic algorithm is due to Jur-

dziński, Paterson, and Zwick [12] and it has a run time of nO(
√
n) for general parity games and of nO(

√
n/ logn)

for parity games in which every node has out-degree at most two. The fastest known randomized algorithm

for general parity games is due to Björklund et al. [4] and it has a run time of nO(
√

n/ log n).
As a polynomial-time algorithm for solving parity games has remained elusive, researchers have started

to consider which restrictions on the game allow for polynomial-time algorithms. One such well-studied
restriction is the treewidth t of the underlying undirected graph G of the game. Obdržálek [16] found an
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algorithm solving parity games on n nodes in time nO(t2). Later, Fearnley and Lachish [6] gave an algorithm
solving parity games in time nO(t logn). Another well-studied parameter for parity games is the number p
of distinct priorities by which the nodes of the game are labeled. The progress-measure lifting algorithm
by Jurdziński [11] solves parity games in time O(pm(2n/p)p/2), where m denotes the number of edges
of G. This run time has been improved by Schewe [18] to O(m((2e)3/2n/p)p/3). Fearnley and Schewe [7]
presented an algorithm for solving parity games with run time O(n(t + 1)t+5(p + 1)3t+5), assuming that a
tree decomposition of G with width t is given.

For a given parameter κ, one usually aims for fixed-parameter algorithm algorithms, i.e., algorithms that
run in time f(κ) · nc for some computable function f and some constant c that is independent of κ. Such
an algorithm can be practical for large instances if f grows moderately and c is small. From the previously
mentioned algorithms only the algorithm by Fearnley and Schewe [7] is a fixed-parameter algorithm for the
combined parameter (t, p). It is not known if fixed-parameter algorithms exist for the parameter t or the
parameter p alone.

Further parameters for which polynomial-time algorithms for parity games have been suggested include
DAG-width [1], clique-width [17], and entanglement [3]; none of these are fixed-parameter algorithms.

1.1 Our Contributions

We study as parameter the number k of nodes that belong to the player who controls the smaller number of
nodes in the parity game. Our first result is a subexponential fixed-parameter algorithm for solving general
parity games for parameters p and k and for parameter only k for bipartite parity games (where players
alternate between their moves).

Theorem 1. There is a deterministic algorithm that solves any parity game G on n nodes and m edges in

time (p + k)O(
√
k) · O(pnm), where k denotes the minimum number of nodes owned by one of the players

and p the number of distinct priorities. If G is bipartite, the algorithm runs in time kO(
√
k) · O(n3).

Thus, our algorithm is particularly efficient if the game is unbalanced, in the sense that one player owns
only k nodes and the other player owns the remaining n− k ≫ k nodes.

Let us remark that it is not very hard to show fixed-parameter tractability for parameter p + k; indeed
McNaughton’s algorithm [15] can be shown to run in time pk ·nO(1), and this was improved to plog k ·4k ·nO(1)

by Gajarský et al. [8]. Our key contribution here is to reduce the dependence of k to a subexponential function.
Indeed, this improvement allows us to derive the following immediate corollary of Theorem 1 to expedite
the run time for solving general parity games.

Corollary 1. There is a deterministic algorithm that solves parity games in time nO(
√
k).

Our algorithm is asymptotically always at least as fast as the fastest known deterministic parity game
solver by Jurdziński, Paterson, and Zwick [12], which runs in time nO(

√
n). For the case k = o(n), our

algorithm is asymptotically faster than theirs and constitutes the fastest known deterministic solver for such
games.

We also prove the existence of a small kernel, as our second result. For a parameterized problem, a
kernelization algorithm takes as input an instance x with parameter κ and computes in time (|x|+κ)O(1) an
equivalent instance x′ with parameter κ′ (a kernel) with size |x′| ≤ g(κ), for some computable function g;
here, equivalent means that an optimal solution for x can be derived in polynomial time from an optimal
solution of x′.

Theorem 2. Parity games can be kernelized in time O(pmn) to at most (p + 1)k + (p + 1)k nodes, and

bipartite parity games can be kernelized in time O(n3) to at most k + 2k · min{k, p} nodes and at most

k2k ·min{k, p} edges.
This kernelization result is not only interesting for its own sake, but it is also an important ingredient in

the proof of Theorem 1.
As our third result, we generalize the algorithm by Jurdziński, Paterson, and Zwick [12] for parity games

with maximum out-degree 2 to arbitrary out-degree ∆.
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Theorem 3. There is a deterministic algorithm that solves parity games on n nodes out of which sj nodes

have out-degree at most j in time

n
O

(

min1≤j≤n

{√
n−sj+

√

sj

logj sj

})

.

Corollary 2. There is a deterministic algorithm that solves parity games on n nodes with maximum out-

degree ∆ in time nO(
√

log(∆)·n/ log(n)) and parity games on n nodes with average out-degree ∆ in time

nO(
√

log(log(n)∆)·n/ log(n)).

1.2 Detailed Comparison with Previous Work

Let us discuss in detail how our results compare to previous work. It is well-known (cf. [14, Lemma 3.2])
and easy to prove that the treewidth of a complete bipartite graph equals the size of the smaller side. Since
the treewidth of a graph can only decrease when deleting edges, the graph underlying a bipartite parity
game in which one player owns k nodes has a treewidth of at most k. However, as it is not known if there
exists a fixed-parameter algorithm for parameter treewidth, the result in Theorem 1 for the bipartite case
does not follow from previous work about parity games with bounded treewidth. As a parity game in which
one player owns k nodes can have up to n different priorities, also the fixed-parameter algorithm for the
combined parameter (t, p) by Fearnley and Schewe [7] does not imply our result.

The algorithm of Jurdziński, Paterson, and Zwick [12] for parity games with maximum out-degree two

with run time nO(
√

n/ logn) can easily be generalized to arbitrary parity games at the expense of its run
time. For this, one only needs to observe that every parity game can be transformed into a game with
maximum out-degree two by replacing each node with a higher out-degree by an appropriate binary tree.
This transformation increases the number of nodes from n to Θ(m) where m denotes the number of edges

in the original parity game. Hence, the run time becomes mO(
√

m/ logm) = nO(
√

m/ log n). For graphs with

average out-degree ∆ = ω(log logn) the resulting run time of nO(
√

∆n/ logn) is asymptotically worse than
the run time we obtain in Corollary 2

For graphs in which the variance of the out-degrees is large, our algorithm can even be better than stated
in Corollary 2. If, for example, there are n1−ε nodes with an arbitrary out-degree for some ε > 0 and

all remaining nodes have constant out-degree at most c then our algorithm has a run time of nO(
√

n
log n

)

(the minimum in Theorem 3 is assumed for j = c). This matches the best known bound for randomized
algorithms.

Gajarský et al. [8] present an algorithm that solves parity games in time wO(
√
w) ·nO(1), where w denotes

the modular width of G. Since the modular width of a bipartite graph can be exponential in the size of the
smaller side, Theorem 1 does not follow from this result.

2 Fundamental Properties of Parity Games

A parity game G = (V0 ⊎V1, E, p) consists of a directed graph (V0 ⊎V1, E), where V0 is the set of even nodes
and V1 is the set of odd nodes, and a priority function p : V0 ∪ V1 → N0. We often abuse notation and also
refer to (V0 ⊎ V1, E) as the graph G. For each node v ∈ V (G), we denote by N+

G (v) and N−
G (v) the set of

out-neighbors and in-neighbors of v in G, respectively.
Two standard assumptions about parity games are (1) that G is bipartite with E ⊆ (V0×V1)∪ (V1×V0),

and (2) that each node u ∈ V has at least one outgoing edge (u, v) ∈ E. The first assumption is often
made because it is easy to transform a non-bipartite instance into a bipartite instance. However, the usual
transformation increases the number of nodes in Vi by an amount of |{v ∈ V1−i | N−

G (v) ∩ V1−i 6= ∅}|, and
can therefore increase the parameter k = min{|V0|, |V1|} significantly. We therefore consider bipartite and
non-bipartite instances separately in Theorem 1.
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We write n = |V (G)|, m = |E| and p = |{p(v) | v ∈ V (G)}|. The game is played by two players, the even

player (or player 0) and the odd player (or player 1). The game starts at some node v0 ∈ V (G). The players
construct an infinite path (a play) as follows. Let u be the last node added so far to the path. If u ∈ V0,
then player 0 chooses an edge (u, v) ∈ E. Otherwise, if u ∈ V1, then player 1 chooses an edge (u, v) ∈ E. In
either case, node v is added to the path and a new edge is then chosen by either player 0 or player 1. As each
node has at least one outgoing edge, the path constructed can always be continued. Let v0, v1, v2, . . . be the
infinite path constructed by the two players and let p(v0), p(v1), p(v2), . . . be the sequence of the priorities
of the nodes on the path. Player 0 wins the game if the largest priority seen infinitely often is even, and
player 1 wins if the largest priority seen infinitely often is odd.

We will define p1(v) as p(v) if p(v) is odd and as −p(v) if p(v) is even. This allows us to say that, in case
p1(v) > p1(u) for some v, u ∈ V , player 1 prefers p(v) over p(u). Observe that removing an arbitrary finite
prefix of a play in a parity game does not change the winner; we refer to this property of parity games as
prefix independence. A strategy for player i ∈ {0, 1} in a game G specifies, for every finite path v0, v1, . . . , vk
in G that ends in a node vk ∈ Vi, an edge (vk, vk+1) ∈ E. A strategy is positional if the edge (vk, vk+1) ∈ E
chosen depends only on the last node vk visited and is independent of the prefix path v0, v1, . . . , vk−1. A
strategy for player i ∈ {0, 1} is winning (for player i) from a start node v0 if following this strategy ensures
that player i wins the game, regardless of which strategy is used by the other player.

The fundamental determinacy theorem for parity games [5, 9] says that for every parity game G and
every start node v0, either player 0 has a winning strategy or player 1 has a winning strategy. Furthermore,
if a player has a winning strategy from some node in a parity game, then she also has a winning positional
strategy from this node. From now on we will therefore, unless stated differently, assume every strategy to
be positional. Given positional strategies s0 on V0 and s1 on V1 and a start node v0 ∈ V the infinite path
starting in v0 corresponding to these strategies consists of a finite prefix and an infinite recurrence of a cycle
C = C(s0, s1, v0). We call C the cycle corresponding to s0, s1, v0 and say that s0 and s1 create C. The parity
of the highest priority p(u) of all nodes u ∈ V (C) in cycle C then determines the winner of the game. The
winning set of player i ∈ {0, 1} is the set wini(G) ⊆ V of nodes of the game G from which player i has a
winning strategy.

For i ∈ {0, 1}, an i-dominion is a set of nodes D ⊆ V so that player i can win from every node of D,
without leaving D and without allowing the other player to leave D. An example of an i-dominion is the
set wini(G), but there may be smaller subsets of wini(G) that are i-dominions as well. Although finding
i-dominions can be just as hard as finding wini(G), searching only for dominions with certain properties (e.g.
small dominions) can be easier. In our algorithm we will use the fact that once an i-dominion is found, it
can easily be removed from the graph, leaving a smaller game to be solved.

Next, we recall some well-known results about parity games that form the basis of the algorithms for
solving parity games by McNaughton [15] and Zielonka [21]. We include them here as our algorithm relies
on them as well; for a detailed exposition we refer to Grädel et al. [9]. Fix a parity game G = (V0 ⊎V1, E, p).

For i ∈ {0, 1}, a set B ⊆ V (G) is i-closed if for every u ∈ B the following holds (we use the notation ¬i
for the element 1− i ∈ {0, 1}):

• If u ∈ Vi, then there exists some (u, v) ∈ E such that v ∈ B; and

• if u ∈ V¬i, then for every (u, v) ∈ E, we have v ∈ B.

In other words, a set B is i-closed if player i can always choose to stay in B while simultaneously player ¬i
cannot escape from it, i.e., B is a “trap” for player ¬i.

Lemma 1. For each i ∈ {0, 1}, the set wini(G) is i-closed.

Let A ⊆ V (G) be a set of nodes and let i ∈ {0, 1}. The i-reachability set of A is the set reachi(A) of
nodes in A together with all nodes in V (G) \A from which player i has a strategy σ to enter A at least once
(regardless of the strategy of the other player); we call such a strategy σ an i-reachability strategy to A.

Lemma 2. For A ⊆ V (G) and i ∈ {0, 1}, the set V (G) \ reachi(A) is (¬i)-closed.

4



We will from now on assume that the graph of the parity game we operate on is encoded as an adjacency
list.

Lemma 3. For every set A ⊆ V (G) and i ∈ {0, 1}, the set reachi(A) can be computed in O(m) time, where

m = |E| is the number of edges in the game.

If B ⊆ V (G) is such that for each node u ∈ V (G) \ B there is an edge (u, v) with v ∈ V (G) \ B, then
the sub-game G − B is the game obtained from G by removing the nodes of B. We will only be using B’s
for which V (G) \ B is an i-closed set for some i. In this case every node in v ∈ V (G) \ B has at least one
out-going edge (v, w) with w ∈ V (G) \ B and G −B will therefore be well-defined. The next lemmas show
some useful properties of sub-games.

Lemma 4. Let G′ be a sub-game of G and let i ∈ {0, 1}. If the node set of G′ is i-closed in G, then

wini(G
′) ⊆ wini(G).

The next lemma shows that if we know some non-empty subset U of the winning set of some player ¬i in
a game G, then computing the winning sets of both players in G can be reduced to computing their winning
sets in the smaller game G− reach¬i(U).

Lemma 5. For any parity game G and i ∈ {0, 1}, if U ⊆ win¬i(G) and U∗ = reach¬i(U), then win¬i(G) =
U∗ ∪ win¬i(G− U∗) and wini(G) = wini(G− U∗).

The next lemma complements Lemma 5 by providing a way to find a non-empty subset of the winning
set of player ¬i in a parity game G or to conclude that player i can win from every node in G.

Lemma 6. Let G be a parity game with largest priority pmax and let Vpmax
⊆ V (G) be the set of nodes with

priority pmax. Let i = pmax (mod 2) and let G′ = G − reachi(Vpmax
). Then win¬i(G

′) ⊆ win¬i(G). Also, if

win¬i(G
′) = ∅, then wini(G) = V , i.e., player i wins from every node of G.

3 Kernelization of Parity Games

In this section, we describe some reduction rules for parity games. Theses rules are such that we can efficiently
compute the winning sets of the original parity game once we know the winning sets of the reduced game.

3.1 General Parity Games

Lemma 7. Any parity game G = (V0 ⊎ V1, E, p) can be transformed in time O(pmn) to a parity game

G′ = (V ′
0 ⊎ V ′

1 , E
′, p′) with V ′

1 ⊆ V1 such that

• there are no edges inside V ′
1 , and

• for each node v ∈ V ′
0 either N+

G (v) ⊆ V ′
1 or N−

G (v) ⊆ V ′
1 , and

• |V ′
0 | ≤ min{n + pk, (p + 1)k + pk}, where k = |V1|.

Moreover, G and G′ have the same winning sets on V ′
1 and the winner of the remaining nodes of G can be

computed either during the transformation or from the winning sets of G′ in linear time.

Proof. We will modify G in multiple steps. We will slightly abuse notation and refer in every step to
the parity game that we obtained in the step before as G = (V0 ⊎ V1, E, p). First we eliminate all edges
inside V1. This can easily be achieved by adding for each edge e = (v, w) ∈ E with v, w ∈ V1 a new node ve
with p′(ve) = p(w) to V0 and by replacing the edge e by the two edges (v, ve) and (ve, w). Since the new
node ve has only a single outgoing edge, this transformation does neither change the winning sets nor the
winning strategies.

Next, we remove certain cycles inside V0 from the game. Let W0 ⊆ V0 denote all nodes in V0 that are
part of at least one cycle that lies completely inside V0 and whose highest priority is even. Clearly player 0

5



can win from all nodes in reach0(W0) by enforcing that such a cycle is entered and never left again. Hence,
we can remove reach0(W0) from the game according to Lemma 5. Let W1 ⊆ V0 denote all nodes that are left
in V0 and from which player 0 cannot reach V1. Then all paths that start in some node u ∈ W1 must end
in some cycle that is completely contained in V0. Since we have removed all cycles whose highest priority is
even, the maximum priority of this cycle must be odd. Thus, player 1 wins from all nodes in reach1(W1).
Hence, we can also remove reach1(W1) from the game according to Lemma 5.

We use again the notation G = (V0 ⊎ V1, E, p) to refer to the parity game obtained after the previously
discussed steps. Since we have removed all cycles from V0 whose highest priority is even, player 0 loses for
sure if she does not leave V0. Hence, we can assume without loss of generality that the play leaves V0 from
every starting node if player 0 plays an optimal strategy. Then for every node v ∈ V0 player 0 uses a (possibly
empty) path inside V0 followed by an edge that leads to some node w ∈ V1. To determine the winning sets
of a strategy of player 0 it is not important to know the exact paths player 0 chooses. Rather, it suffices
to know for each v ∈ V0 which node w ∈ V1 will be reached and what the highest priority on the chosen
v-w-path is. To get rid of long paths, we add p · |V1| new nodes to V0, one node v(p′, w) for each pair of a
priority p′ and a node w ∈ V1. Node v(p′, w) has a priority p′ and its only out-neighbor is w. The winner
does not change if player 0 goes from v ∈ V0 directly to v(p′, w) and from there directly to w ∈ V1 instead
of taking some other path from v inside V0 with maximum priority p′, followed by an edge that leads to w.
For all such paths we add the corresponding edge (v, v(p′, w)) and can therefore delete all edges inside V0

that do not end in one of the new nodes v(p′, w) without changing the winning sets of the game. Observe
that this ensures that all out-neighbors of the new nodes v(p′, w) belong to V1 while all in-neighbors of the
old nodes v ∈ V0 belong to V1.

It can be the case that for some pair (v, w) ∈ V0×V1 there are multiple nodes v(p′, w) that can be reached
from v. We can assume without loss of generality that if player 0 decides to go from v to w via one of these
nodes then she chooses the one that is best for her, i.e., the one with lowest p1-value. All edges from v to
other nodes v(p′, w) can be removed.

The inequality |V ′
0 | ≤ n + min{m, k2} + pk follows directly from the previously discussed construction:

initially V0 consists of n− k ≤ n nodes, there are at most min{m, k2} edges inside V1 for which we create a
new node ve, and there are only pk new nodes v(p′, w). To get rid of the term min{m, k2} we can identify
each node ve, which derived from an edge e = (v, w) inside V1, with the node v(p(w), w). This ensures that
there are only pk new nodes. To show that |V ′

0 | ≤ (p+ 1)k + pk we can reduce the number of old nodes in V1

to ensure that at most (p + 1)k remain. At first we remove all nodes v ∈ V0 with N−
G (v) = ∅, because they

obviously cannot be part of a cycle and we can compute in linear time to which winning set they belong,
once we know to which winning set their out-neighbors belong. Now let v and v′ be two such nodes in V0

with N+
G (v) = N+

G (v′). We then identify v and v′ without changing the winning sets in V1, since all nodes
in N+

G (v) must have a priority at least as high as max{p(v), p(v′)}. This is because the priority of any node
in N+

G (v) (N+
G (v′)) corresponds to the highest priority on a path that starts in v (v′) and therefore must be

at least p(v) (p(v′)). Afterwards there remains at most one node v ∈ V0 for each possible set N+
G (v).

Since N+
G (v) can contain at most one new node corresponding to w for each w ∈ V1 and there are p

different ones to choose from there are at most (p + 1)k different possibilities for N+
G (v).

It remains to analyze the run time of the transformation. We consider the different steps of the reduction
separately. The first step of removing all edges inside V1 can be performed in O(m) because we only need to
check for every edge e = (v, w) ∈ E if v, w ∈ V1 and then remove one edge and add two edges and a node.
The second step of removing dominions completely inside V0 can be executed in time O(log(p) ·m) as follows.
First, we solve the solitary game on V0 \ reach1(V1) and remove the 0-reachability-set of its 0-winning set;
this can be done in time O(log p ·m) [2]. Thereafter, we compute the 1-reachability set of V0 \ reach0(V1)
and remove it; this can be done in time O(m) [12]. The third step of removing long paths inside V0 can be
performed as follows. The algorithm computes the best priority for player 0 that a path in V0 from a node
v ∈ V0 to a node w ∈ V1 can have. To determine which nodes in v ∈ V0 can reach which nodes w ∈ V1 via a
path in V0 whose highest priority has fixed value of p′, consider the subgraph G≤p′

of G that is induced by
the set V ≤p′

of nodes of priority at most p′ and remove from it those edges that start in V1. We then consider
the set of nodes with priority exactly p′ and compute by DFS in time O(m) all nodes in V1 reachable from
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them. Then we compute with DFS for each node in V0 which of the nodes with priority p′ they can reach.
This takes a total of at most 2n applications of DFS for each priority and therefore in total O(pmn) time. In
the last step where we remove and contract some of the nodes in V0 we can find all nodes without incoming
edges in time O(m) and we can order all remaining nodes by their outgoing edges in time O(|V1| · (n+p+1))
using a version of radix-sort, where we view the set of out-neighbors as an (p + 1)-adic number with |V1|
digits. Thereafter, in linear time we identify sets of nodes with the same outgoing neighbors and identify
them in total time O(n + m).

3.2 Bipartite Parity Games

In this section we give some reduction rules that efficiently reduce any bipartite game G = (V0 ⊎ V1, E, p) to
a structurally simpler bipartite game G′ = (V ′

0 ⊎V ′
1 , E

′, p′), such that the winning sets of G can be efficiently
recovered from the winning sets of G′. After exhaustive application of the reduction rules, the reduced
game G′ will have size bounded by some function of k and p only, independent of the size of G.

The digraphs of our underlying parity game may have self-loops and bidirected edges, but (without loss
of generality) no parallel edges between the same two nodes. Thus, whenever parallel edges arise during the
application of one of the reduction rules, we remove one of them without explicit mention.

Lemma 8. Let G = (V0⊎V1, E, p) be a bipartite parity game, and let u, v ∈ V0 be such that N+
G (v) ⊆ N+

G (u)
and p1(v) ≥ p1(u). Let G′ be the parity game obtained from G by deleting the edges {(w, u) ∈ E | (w, v) ∈ E}.
Then the winning sets of G and G′ are equal.

Proof. We show that an edge (w′, u) ∈ {(w, u) ∈ E | (w, v) ∈ E} can only be part of a winning strategy for
player 1 on node w′ if the edge (w′, v) is part of a winning strategy for player 1 on w′ as well. Therefore,
after deleting (w′, u), player 1 wins from w′ in G′ if and only if he wins from w′ in G. Deleting the edges in
{(w, u) ∈ E | (w, v) ∈ E} does therefore not change the winning sets.

Assume that player 1 has a winning strategy s1 : V1 → V0 for w′ with s1(w′) = u. Let s′1 : V1 → V0

be defined by s′1(w′) = v and s′1(w) = s1(w) for all w ∈ V1 \ {w′}. We claim that s′1 is a winning strategy
for player 1 on w′ as well. Assume that there exists a counter strategy s′0 for s′1 such that player 0 wins
the game with starting node w′. We will define a strategy s0 for player 0 and show that s0 is a counter
strategy for s1. Note that s0 will not necessarily be a positional strategy. For all w ∈ V0 \{u}, s0 chooses the
same successor as s′0, but on u it might change its behavior. Each time the play encounters u directly after
encountering w′, strategy s0 chooses s′0(v) as the successor of u. Every other time the play encounters u,
strategy s0 chooses s′0(u) as the successor of u.

The play defined by s′0 and s′1 can then be transformed into the play defined by s0 and s1 by replacing
every appearance of the sequence w′, v, s′0(v) with the sequence w′, u, s′0(v). Let C′ be the cycle created by s′0
and s′1; then C′ is a winning cycle for player 0. Then s0 and s1 will also create the cycle C′, if C′ does not
contain the sequence w′, v, s′0(v). Let us therefore assume that C′ contains the sequence w′, v, s′0(v). Let C
be the closed walk obtained, when replacing v with u in C′. After a finite prefix the play defined by s0
and s1 will consist of an infinite recurrence of C. Since we have p1(v) ≥ p1(u) player 0 is wining the play
defined by s0 and s1. This contradicts that s1 is a winning strategy for player 1.

Lemma 9. Let G = (V0⊎V1, E, p) be a bipartite parity game, and let u, v ∈ V0 be nodes with N+
G (u) = N+

G (v)
and p(v) = p(u). Let G′ be the parity game obtained from G by contracting u and v into a new node v′

with priority p(v). Then u and v belong to the same winning set wini(G) in G and v′ belongs to the winning

set wini(G
′) of the same player in G′. For all other nodes the winning sets of G and G′ coincide.

Proof. Note that u and v belong to the winning set of the same player i in G. We can assume that player 0
chooses the same successor for u and v in her optimal strategy. Then no cycle created by optimal strategies
contains both u and v and, after the contraction, each simple cycle that does not contain both u and v is
again a simple cycle with the same priorities. Also, each cycle in the contracted game either exists in the
original game (i.e., it does not contain v′) or an equivalent cycle, which can be created by replacing v′ with v
or u, exists in the original game. We can also map winning strategies in the original game, where u and v
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have the same successor into winning strategies in the resulting game and vice versa by simply identifying
the successors of v′ with the successor of u and v and vice versa, while keeping the rest of the strategy. We
again assume that in the winning strategies in the original game, v and u have the same successor w. We
then set the successor of v′ to w and set the successor of any node w′ with successor v or u to v′. The other
way around v and u get the same successor as v′ and any node w′ with successor v′ gets either v or u as its
successor, depending on which of the edges (w′, v) and (w′, u) exists in the original game. A pair of strategies
and the pair of strategies, to which they are mapped to, then create corresponding cycles and must therefore
either both be winning for player 1 or both be winning for player 0.

Lemma 10. Let G = (V0 ⊎ V1, E, p) be a bipartite parity game, and let v ∈ V (G) be such that N−
G (v) = ∅.

Then for the parity game G′ = G− v and for i ∈ {0, 1}, any node v′ 6= v is winning for player i in G if and

only if it is winning for player i in G′.

Proof. The condition N−
G (v) = ∅ implies that v cannot be part of any cycle. Let v ∈ Vj ; then v ∈ winj(G)

is equivalent to the existence of some node w ∈ winj(G) ∩N+
G (v). Since all possible strategies for all nodes

except v are also possible strategies in G−{v}, all nodes in V \ {v} belong to the same winning set in G and
in G− v. (Notice that G−{v} is again a parity game.) Once we computed the winning sets for G−{v}, we
can check in time O(n) whether v ∈ winj(G) or v ∈ win¬j(G).

Lemma 11. Let G = (V0 ⊎ V1, E, p) be a parity game with largest priority pmax = max{p(v) | v ∈ V (G)}. If

p−1(z) = ∅ for some z ∈ {1, . . . , pmax} then let G′ = (V0 ⊎ V1, E, p′) be the parity game obtained from G by

setting p′(v) = p(v)− 2 for all v ∈ V with p(v) > z and p′(v) = p(v) for all v ∈ V with p(v) < z. Then the

winning sets of the games G and G′ coincide.

Proof. Let s0 and s1 be strategies for player 0 and player 1, respectively, and let C = (v0, v1, . . . , vℓ) be the
cycle created by these strategies when the game starts at some node v. The parity j of the largest element
in the set Q = {p(v0), . . . , p(vℓ)} determines which player wins in G and the parity j′ of the largest element
in the set Q′ = {p′(v0), . . . , p′(vℓ)} determines which player wins in G′. It is easy to see that our reduction
ensures that j = j′. Since this is true for any cycle, the lemma follows.

Corollary 3. In any parity game with maximum priority pmax to which the reduction rule described in

Lemma 11 cannot be applied anymore, the set of priorities is either {0, 1, . . . , pmax} or {1, . . . , pmax}.

Lemma 12. Let G = (V0 ⊎ V1, E, p) be a bipartite parity game with |V1| = k that is reduced according to

Lemmas 8–10. Then |V0| ≤ 2k ·min{k, p}.

Proof. For each node v ∈ V0 there are 2k possible choices for N+
G (v). Lemma 8 yields that for two nodes

v 6= u ∈ V0 with N+
G (v) = N+

G (u) we must have N−
G (v) ∩N−

G (u) = ∅. Lemma 10 then yields that there can
be at most k nodes in V0 for every possible choice of N+

G (v). Also Lemma 9 yields that for each possible
choice of (N+

G (v), p(v)) there exists at most one node in V0.

Lemma 13. There exists a sequence of applications of the reduction rules described in Lemmas 8–11 with a

total run time of O(n3) that leads to a game in which none of these rules applies anymore.

Proof. We show for each reduction rule separately how to apply it exhaustively in time O(n3). Although
it can happen, that some reductions corresponding to one of the rules could lead to allowing some other
reductions which were not allowed before. Therefore we cannot only apply all reductions corresponding to
one rule after all reductions corresponding to another rule.

Most of the run time will be necessary to test if Lemma 8 or Lemma 9 applies to an ordered pair of
nodes. We will argue how to apply the reductions such that we do not have to test the same ordered pair of
nodes more than once, yielding a total run time of O(n3).

To apply all reductions of Lemma 11, we first sort the nodes in increasing order of their priorities and
create an order of subsets each containing all nodes with the same priority; this can be done in O(n log(n))
time. We then save for each of the subsets if its corresponding priority is odd or even and unite consecutive
sets with the same parity. If the parity of the priority in the first subset is even, all nodes in the i-th subset
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get priority i − 1; otherwise all nodes in the i-th subset get priority i. Uniting sets can be done in linear
time, and we cannot unite more than n times. The time for applying Lemma 11 is thus O(n2).

To apply all reductions for Lemma 8, we need to check for each pair of nodes {u, v} ⊆ V0 with p1(v) ≥
p1(u) whether N+

G (v) ⊆ N+
G (u), and find all nodes w with (w, u) ∈ E and (w, v) ∈ E. There are O(n2)

node pairs {u, v} ∈ V0 with p1(v) ≥ p1(u), which can easily be found using the order of subsets created for
Lemma 11. Checking if N+

G (v) ⊆ N+
G (u) and finding all nodes w with (w, u) ∈ E and (w, v) ∈ E can be

done in time O(n). The total run time for Lemma 8 therefore is O(n3).
To apply all reductions for Lemma 9 we need to check for each pair of nodes {u, v} ⊆ V0 with p(v) = p(u)

whether N+
G (v) = N+

G (u). There are O(n2) such pairs {u, v} with p(v) = p(u), which can easily be found
using the order of subsets created for Lemma 11. Testing whether N+

G (v) = N+
G (u) and identifying u and v

can be done in time O(n). The total run time for Lemma 9 therefore is O(n3).
To apply all reductions for Lemma 10, we only need to check for each node if it has incoming edges and

possibly delete it. Testing a node can be done in constant time, and deleting a node takes at most linear
time. The time for applying Lemma 10 is thus O(n2).

We will first apply all feasible reductions for Lemma 11, then all feasible reductions for Lemmas 8, 9
and 10. Any reduction that is now possible was not feasible in the beginning.

Observe that some reductions can result in other reductions becoming feasible. Since we do not change
the out-neighborhood of any node in V0, reductions corresponding to Lemmas 8 and 9 for a pair of nodes
{u, v} ⊆ V0 can only become feasible when we combine the two subsets containing v and u in a reduction
corresponding to Lemma 11. For each node pair {u, v} ⊆ V0 this can happen at most once. The total run
time for all reductions corresponding to Lemma 8 and 9 therefore is in O(n3). Reductions corresponding
to Lemma 10 and a node v ∈ V0 can only become feasible when we remove incoming edges of v. This can
happen at most n times for each node v ∈ V0, before we remove it. The total run time for all reductions
corresponding to Lemma 10 therefore is in O(n2). Reductions corresponding to Lemma 11 can only become
feasible when all nodes of one subset have been removed. This can happen at most n times; hence any node
will be moved to another subset at most n times. The total run time for all reductions corresponding to
Lemma 11 therefore is in O(n2).

We can now prove our main kernelization result.

Theorem 2. The part of the theorem for general instances follows directly from Lemma 7. The part for
bipartite instances follows from Lemma 12 and Lemma 13 because the reduced bipartite parity game G′ =
(V ′

0 ⊎V ′
1 , E

′, p′) satisfied |V ′
0 | ≤ 2k ·min{k, p} and |V ′

1 | ≤ k. Since G′ is bipartite, this implies that it contains
at most k2k ·min{k, p} edges.

4 A Simple Exponential-Time Algorithm

A simple algorithm with run time O(2n) for the solution of parity games originates from the work of Mc-
Naughton [15] and was first presented for parity games by Zielonka [21]; see also Grädel et al. [9]. Algorithm
win(G) receives a parity game G and returns the pair of winning sets (win0(G) = W0,win1(G) = W1).

Algorithm win(G) is based on Lemmas 5 and 6. Let pmax be the largest priority in G and let Vpmax

be the set of nodes with priority pmax. Let i = pmax (mod 2) be the player who owns the highest priority.
The algorithm first finds the winning sets (W ′

0,W
′
1) of the smaller game G′ = G − reachi(Vpmax

) in a first
recursive call. If W ′

¬i = ∅, then by Lemma 6 player i wins from all nodes of G and we are done. Otherwise,
again by Lemma 6 we know that W ′

¬i ⊆ win¬i(G). The algorithm then finds the winning sets (W ′′
0 ,W

′′
1 )

of the smaller game G′′ = G − reach¬i(W
′
¬i) by a second recursive call. By Lemma 5, wini(G) = W ′′

i and
win¬i(G) = reach¬i(W

′
¬i) ∪W ′′

¬i = V (G) \W ′′
i .

Theorem 4. Algorithm win(G) finds the winning sets of any parity game on n nodes in time O(2n).

Proof. The correctness of the algorithm follows from Lemmas 5 and 6, as argued above. Let T ′(n) be the
number of steps needed by algorithm win(G) to solve a game G on n nodes. Algorithm win(G) makes two
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Algorithm 1 win(G)

Input: A parity game G = (V0 ⊎ V1, E, p) with maximum priority pmax.
Output: (W0,W1), where Wi is the winning set of player i ∈ {0, 1}.
1: if V = ∅ then
2: return (∅, ∅)
3: i← pmax (mod 2); j ← ¬i
4: (W ′

0,W
′
1)← win(G− reachi(Vpmax

))
5: if W ′

j = ∅ then
6: (Wi,Wj)← (V, ∅)
7: else
8: (W ′′

0 ,W
′′
1 )← win(G− reachj(W

′
j))

9: (Wi,Wj)← (W ′′
i , V \W ′′

i )

10: return (W0,W1)

recursive calls win(G′) and win(G′′) on games with at most n− 1 nodes. Other than that, it performs only
O(n2) operations. (The most time-consuming operations are the computations of the sets reachi(Vpmax

) and
reachj(W

′
j).) Therefore, T ′(n) ≤ 2T ′(n− 1) + O(n2), which implies T ′(n) = O(2n).

5 Overview of the New Algorithms

Before we describe our new algorithms that lead to Theorems 1 and 3 in detail in Sect. 7 and Sect. 8, we
present an overview of the main ideas. The algorithm new-win(G) by Jurdziński, Paterson, and Zwick [12]
with run time nO(

√
n) is a slight modification of the just described algorithm win(G). At the beginning of

each recursive call it tests in time O(nℓ) if the parity game contains a dominion D of size at most ℓ = ⌈
√

2n⌉.
If this is the case then D is removed and the remaining game is solved recursively. Else, the parity game is
solved by the algorithm win(G), except that the recursive calls in lines 4 and 8 are made to new-win(G).
Since this happens only when G does not contain a dominion of size at most ℓ, the dominion reachj(W

′
j)

that is removed in line 8 has size greater than ℓ and hence, the second recursive call is to a substantially
smaller game. Overall, this leads to the improved run time of nO(

√
n).

Our new algorithms are based on a similar idea. Instead of simply searching for a dominion of size
at most ℓ, our algorithm new-win1(G) that leads to Theorem 1 searches for a dominion that contains at
most ℓ = ⌊

√
2k⌋ nodes of the odd player, assuming without loss of generality that the odd player controls

fewer nodes, i.e., k = |V1|. If such a dominion is found then we remove it from the game and solve the
remaining game recursively. Otherwise, we use the algorithm win(G) to solve the parity game, except that
the recursive calls in lines 4 and 8 are made to new-win1(G). It can happen that in the game to which the
first recursive call in line 4 is made, the odd player controls again k nodes. We will show that in bipartite
instances this cannot happen in two consecutive calls. For general instances we use that the observation that
at least the number of different priorities decreases by one in the recursive call. Searching efficiently for a
dominion that contains at most ℓ = ⌊

√
2k⌋ nodes of the odd player is more involved than simply searching

for dominions whose total size is at most ℓ. We use multiple recursive calls of new-win1 to test if such a
dominion exists, which makes the recursion of our algorithm and its analysis more complicated.

Our second algorithm leading to Theorem 3 is based on the same approach and inspired by the algorithm
of Jurdziński, Paterson, and Zwick [12]. In this case we let sj , for some j ∈ N, equal the number of nodes
with out-degree at most j. We separate the nodes into sj nodes with out-degree at most j and n− sj nodes
with out-degree larger than j and, at the beginning of each iteration, search for and remove dominions that
contain at most ℓ = ⌈

√

2(n− sj)⌉ nodes with out-degree larger than j and at most s = ⌈√sj · logj sj⌉ nodes

with out-degree at most j. This algorithm runs in time n
O

(√
n−sj+

√

sj

logj sj

)

, which implies Theorem 3.
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6 Finding Small Dominions

We now describe how dominions with the previously discussed properties can be found. Let G = (V0⊎V1, E, p)
be a parity game. Recall that for i ∈ {0, 1}, a set D ⊆ V is an i-dominion if player i can win from every
node of D without ever leaving D, regardless of the strategy of player ¬i. Note that any i-dominion must
be i-closed. A set D ⊆ V is a dominion if it is either a 0-dominion or a 1-dominion. By prefix independence
of parity games, the winning set wini(G) of player i is an i-dominion.

For k, p ∈ N, let T (k) denote the maximum number of steps needed to solve a bipartite parity game
G = (V0 ⊎ V1, E, p) and let T (k, p) denote the maximum number of steps needed to solve a general parity
game G = (V0 ⊎ V1, E, p) with |V1| = k and p = |{p(v) | v ∈ V }| using some fixed algorithm. For k, p, ℓ ∈ N,
let domk(ℓ) denote the maximum number of steps required to find a dominion D with |V1 ∩ D| ≤ ℓ in a
bipartite parity game G = (V0 ⊎ V1, E, p) with |V1| = k and let domk,p(ℓ) denote the maximum number of
steps required to find a dominion D with |V1 ∩ D| ≤ ℓ in a general parity game G = (V0 ⊎ V1, E, p) with
|V1| = k and p = |{p(v) | v ∈ V }|, or to determine that no such dominion exists.

We will in the analysis of run times make the assumption that computation and removal of reachability
sets as well as kernelization are elementary operation and can therefore be performed in time O(1). To
obtain the actual run times of our algorithms we will in the end multiply the computed run times by a factor
corresponding to the time needed for these operations.

Lemma 14. For k ≥ 4, domk(ℓ) = O(kℓ · T (ℓ)) and domk,p(ℓ) = O(kℓ · T (ℓ, p)).

Proof. There are O(kℓ) sets VD ⊆ V1 with |VD| = ℓ. We argue below that for each such set VD, one can
determine whether or not there exists a dominion D with D ∩ V1 ⊆ VD by solving two parity games that
are sub-games of G, i.e., these games arise from G by removing some of the nodes. This implies the lemma
because each of these sub-games can be solved in time T (ℓ) or T (ℓ, p) for bipartite or general parity games,
respectively.

Let VD ⊆ V1 be a set with |VD| = ℓ. We will now show how to check if there exists an i-dominion D with
D ∩ V1 ⊆ VD. If such an i-dominion D exists, then it is i-closed. Therefore, it does not contain any node
v ∈ V from which player ¬i can reach a node in V1 \ VD. Let V ′ = V (G) \ reach¬i(V1 \ VD) be the set of
nodes from which player ¬i cannot force to reach a node in V1 \ VD; the set V ′ can therefore be computed
by computing and removing a reachability set, which as we assumed is an elementary operations. We then
have D ⊆ V ′, and since no node in V1 \ VD can be part of V ′, it holds that V ′ ∩ V1 ⊆ VD. Since V ′ is an
i-closed set, the game G − reach¬i(V1 \ VD) is well defined. Let wini(V

′) be the winning set of player 1 in
the game G− reach¬i(V1 \ VD). Then wini(V

′) is an i-dominion that contains D.
This shows that for each set VD ⊆ V1 with |VD| = ℓ we only need to compute for i ∈ {0, 1} the sets

V ′
i = V \ reach¬i(V1 \ VD) of nodes from which player ¬i cannot force to enter V1 \ VD and compute the

winning sets of the game G − reach¬i(V1 \ VD) to determine whether or not there exists a dominion D
with D ∩ V1 ⊆ VD.

With the algorithm described in Lemma 14 we can find a dominion D such that |D ∩ V1| ≤ ℓ if such a
dominion exists. We denote this algorithm by dominion1(G, ℓ) and assume that it returns either the pair
(D, i) if an i-dominion D is found, or (∅,−1) if not.

We will give the pseudocode for algorithm dominion(G, ℓ, s). In the pseudocode, let Um denote the set
of marked nodes from U and let king(U, strategyi) denote an execution of the algorithm by King et al. [13]
that determines the winners of the sub-game G restricted to U with a given strategy for player i.

7 New Algorithms for Solving Parity Games

We present the algorithm new-win1(G) discussed in Sect. 5 in detail. Let G = (V0 ⊎ V1, E, p) with |V1| = k
be a parity game with p distinct priorities.

The algorithm new-win1 starts by trying to find a “small” dominion D, where small means |D∩V1| ≤ ℓ,
where ℓ = ⌊

√
2k⌋ is a parameter chosen to minimize the run time of the algorithm. If such an i-dominion is
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Algorithm 2 dominion(G, ℓ, s)

Input: A parity game G = (V0 ⊎ V1, E, p) and ℓ, s ∈ {0, . . . , |V (G)|}.
Output: An i-dominion (D, i) for i ∈ {0, 1} or (∅,−1) if no dominion is found.
1: Fix a total order ≺ on the nodes of G.
2: For each u ∈ V (G) sort the edges emanating from u by ≺ on their respective endpoint.
3: for i ∈ {0, 1} do
4: for v ∈ Vi do
5: for 〈a1, . . . , aℓ, b1, . . . , bs〉 ∈ {1, . . . , |V (G)|}ℓ × {1, . . . , j}s do
6: r1 = 1, r2 = 1, U = {v}, Um = ∅
7: while U 6= ∅, r1 ≤ ℓ and r2 ≤ s do
8: Choose u = min(U,≺).
9: U = U \ {u}, Um = Um ∪ {u}.

10: if u ∈ Vi then
11: if |δ+(u)| > j then
12: if |δ+(u)| ≤ r1 then
13: Let e = (u,w) be the ar1 -th outgoing edge of u.
14: U = U ∪ ({w} \ Um), r1 = r1 + 1, strategyi(u) = w.
15: else
16: U = ∅, Um = ∅.
17: else
18: if |δ+(u)| ≤ r2 then
19: Let e = (u,w) be the br2-th outgoing edge of u.
20: U = U ∪ ({w} \ Um), r2 = r2 + 1, strategyi(u) = w.
21: else
22: U = ∅, Um = ∅.
23: else
24: U = U ∪ (N+(u) \ Um)

25: if Um 6= ∅ contains at most ℓ high out-degree nodes and at most s low out-degree nodes then
26: (W0,W1) = king(U, strategyi).
27: if Wi = U then
28: return (U, i)

29: return (∅,−1).

found, then we remove it together with its i-reachability set from the game and solve the remaining game
recursively. If no small dominion is found, then new-win1 simply calls algorithm old-win1, which is almost
identical to algorithm win. The only difference between old-win1 and win is that its recursive calls are
made to new-win1 and not to itself.

The recursion stops once the number of odd nodes is at most 4, in which case we will test each of the at
most ((p+ 1)4)4 (due to the size of our kernel) different strategies for player 1 in constant time. We will call
this brute force method solve(G). We will also kernelize using the reduction rules described in Sect. 3. We
will call the kernelization subroutine kernel(G). The pseudocode of new-win1(G) can be found in Sect. 9.

The correctness of the algorithm follows analogously to the correctness of win(G). We analyze the run
time of new-win1(G) and prove Theorem 1 in section 10.

8 Out-degree based Algorithm

We now describe our second algorithm new-win2(G, j). In order to describe it, let j ∈ N and let sj denote
the number of nodes of out-degree at most j. new-win2(G, j) is then almost identical to new-win1(G),
but instead of dominions that contains at most ℓ′ = ⌊

√
2k⌋ nodes of the odd player, we search for and delete
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dominions that contain at most ℓ = ⌈
√

2(n− sj)⌉ nodes with out-degree larger than j and at most s =

⌈√sj · logj sj⌉ nodes with out-degree at most j. This algorithm has a run time of n
O

(√
n−sj+

√

sj

logj sj

)

,
which implies Theorem 3.

In the following let us assume j = arg min1≤j′≤n

{√
n− sj′ +

√

sj′

logj′ sj′

}

. We say that a node v has

high out-degree if |δ+(v)| > j and low out-degree otherwise. For n, z, ℓ, s ∈ N, let domn,z(ℓ, s) denote the
maximum number of steps required to find a dominion D with at most ℓ high out-degree and at most s low
out-degree nodes in a parity game G = (V0⊎V1, E, p) with n nodes out of which z are high out-degree nodes,
or to determine that no such dominion exists.

Lemma 15. For all values of ℓ, s ∈ {0, . . . , n}, it holds

domn,z(ℓ, s) = O
(

nℓ+1js(ℓ + s)2 ·max{1, log(ℓ + s)}
)

= O
(

nℓ+4js
)

.

Proof. Fix an arbitrary total order ≺ on V (G). Let u ∈ V (G) be a node of G and let (u, v1), . . . , (u, v|δ+(u)|)
be the edges emanating from u, where vi ≺ vi+1 for all i ∈ {1, . . . |δ+(v)|−1}; we call (u, vi) the i-th outgoing

edge of u. The algorithm generates at most O(n · nℓjs) 0-closed sets of nodes that contain at most ℓ nodes
with an out-degree greater than j and at most s nodes with an out-degree at most j, which are candidates for
being 0-dominions. For every node v ∈ V and every sequence 〈a1, . . . , aℓ, b1, . . . , bs〉 ∈ {1, . . . , n}ℓ×{1, . . . , j}s
construct a set U ⊆ V as follows. Start with U = {v} and r1 = 1, r2 = 1. Nodes added to U are initially
unmarked. As long as there is still an unmarked node in U , pick the smallest such node u ∈ U with respect
to ≺ and mark it.

• If u ∈ V0 and u has high out-degree then add the endpoint of the ar1-th outgoing edge of u to U (if it
is not already present in U) and increment r1.

• If u ∈ V0 and u has low out-degree then add the endpoint of the br2-th outgoing edge of u to U (if it
is not already present in U) and increment r2.

• If u ∈ V1 then add the endpoints of all outgoing edges of u that are not yet part of U to U .

If at some stage U contains either more than ℓ nodes with high out-degree or more than s nodes with low
out-degree, or the endpoint of the i-th outgoing edge of some node v with out-degree |δ+(v)| < i should
be added to U , then discard the set U and restart the construction with the next sequence. If the process
above ends without discarding U , then a 0-closed set containing at most ℓ high out-degree and at most s low
out-degree nodes has been found. Furthermore, for every node u ∈ U ∩ V0, one of the outgoing edges of u
was selected. This corresponds to a suggested strategy for player 0 in the game G restricted to the set U .

Our algorithm therefore considers by exhaustive search all 0-closed sets containing at most ℓ high out-
degree and at most s low out-degree nodes, and for each set considers all possible positional strategies for
player 0. Using an algorithm of King et al. [13] we can check in time O((ℓ + s)2 log(ℓ + s)) time whether
a given pair of set U and proposed strategy is indeed a winning strategy for player 0 from all nodes of U .
Thus, if there is a 0-dominion containing at most ℓ high out-degree and at most s low out-degree nodes, then
the algorithm will find one. Finding 1-dominions can be done in an analogous manner.

With the just described algorithm, we can find a dominion D with at most ℓ nodes with high out-
degree and at most s nodes with low out-degree if such a dominion exists. We denote this algorithm by
dominion2(G, ℓ, s), and suppose that it returns either the pair (D, i) if such an i-dominion D is found, or
(∅,−1) if not.

The algorithm new-win2 starts by trying to find a “small” dominion D, where small means that D
contains at most ℓ nodes with out-degree greater than j and at most s nodes with out-degree at most j,
where ℓ = ⌈

√

2(n− sj)⌉ and s = ⌈√sj · logj sj⌉ are parameters chosen to minimize the run time of the
whole algorithm. If such an i-dominion is found, then we remove it together with its i-reachability set from
the game and solve the remaining game recursively. If no small dominion is found, then new-win2 simply

13



calls algorithm old-win2, which is almost identical to algorithm win. The only difference between old-win2

and win is that its recursive calls are made to new-win2 and not to itself.
The recursion stops once the number of nodes with out-degree at most j and the number of nodes

with out-degree greater than j are both at most 3, in which case we will test all of the at most constant
different strategies for the two players in constant time. We will call this brute force method solve(G). The
pseudocode of new-win2 can be found in Sect. 9.

The correctness of new-win2 follows analogously to the correctness of the simple algorithm win. We
analyze the run time of new-win2 and prove Theorem 3 in Sect. 10.

We can now proove Corollary 2.

Corollary 2. First consider a parity game on n nodes played on a graph with maximum out-degree ∆.
Then s∆ = n and

√
n− s∆ +

√

s∆
log∆ s∆

=

√

n

log∆ n
=

√

log(∆)n

logn
.

Now the first part of the corollary follows immediately from Theorem 3.
Let us now consider the case that the average out-degree is ∆ and let z = log(n)∆. Then Markov’s

inequality implies sz ≥ (1− 1/ log(n))n. Hence,

√
n− sz +

√

sz
logz sz

≤
√

n

log(n)
+

√

n

logz n
=

√

n

log(n)
+

√

log(log(n)∆)n

logn
.

Now the second part of the corollary follows immediately from Theorem 3.

9 Pseudocode for Algorithms new-win

We will now give the pseudocode for the algorithms new-win1(G) and new-win2(G, j) together with their
subroutines old-win1(G) and old-win2(G, j). In the pseudocodes, we call a function solve(G). This
function denotes a bruteforce method to solve parity games and is only used on very small games.

Algorithm 3 new-win1(G)

Input: A parity game G = (V0 ⊎ V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.
1: k ← |V1|; ℓ←

⌊√
2k
⌋

; G = kernel(G)

2: if k ≤ 4 then return solve(G)

3: (D, i)← dominion1(G, ℓ)
4: if D = ∅ then
5: (W0,W1)← old-win1(G)
6: else
7: (W ′

0,W
′
1)← new-win1(G− reachi(D))

8: (W¬i,Wi)← (W ′
¬i, V \W ′

¬i)

9: return (W0,W1)

14



Algorithm 4 old-win1(G)

Input: A parity game G = (V0 ⊎ V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.
1: G = kernel(G)
2: i← pmax (mod 2)
3: (W ′

0,W
′
1)← new-win1(G− reachi(Vpmax

))
4: if W ′

¬i = ∅ then
5: (Wi,W¬i)← (V, ∅)
6: else
7: (W ′′

0 ,W
′′
1 )← new-win1(G− reach¬i(W

′
¬i))

8: (Wi,W¬i)← (W ′′
i , V \W ′′

i )

9: return (W0,W1)

Algorithm 5 new-win2(G, j)

Input: A parity game G = (V0 ⊎ V1, E, p) and j ∈ {1, . . . |V |}.
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.
1: sj ← |{v ∈ V ||δ+(v)| ≤ j}|; ℓ←

⌈

√

2(n− sj)
⌉

; s←
⌈
√

sj · logj sj
⌉

2: if sj ≤ 3 and n− sj ≤ 3 then return solve(G)

3: (D, i)← dominion2(G, ℓ, s)
4: if D = ∅ then
5: (W0,W1)← old-win2(G, j)
6: else
7: (W ′

0,W
′
1)← new-win2(G− reachi(D), j)

8: (W¬i,Wi)← (W ′
¬i, V \W ′

¬i)

9: return (W0,W1)

Algorithm 6 old-win2(G, j)

Input: A parity game G = (V0 ⊎ V1, E, p).
Output: A partition (W0,W1) of V , where Wi is the winning set of player i ∈ {0, 1}.
1: i← pmax (mod 2)
2: (W ′

0,W
′
1)← new-win2(G− reachi(Vpmax

), j)
3: if W ′

¬i = ∅ then
4: (Wi,W¬i)← (V, ∅)
5: else
6: (W ′′

0 ,W
′′
1 )← new-win2(G− reach¬i(W

′
¬i), j)

7: (Wi,W¬i)← (W ′′
i , V \W ′′

i )

8: return (W0,W1)

10 Analysis of the Run Time

We will show that algorithm new-win(G) has a run time of O(p ·m · n) · (p + k)O(
√
k) on general instances

and in time O(n3) · kO(
√
k) on bipartite instances. We will also show that algorithm new-win(G, j) has a

run time of n
O

(√
n−sj+

√

sj

logj sj

)

, where sj the number of nodes in G with out-degree at most j.
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Note that the part O(pmn) of the run time comes from the reduction of the instance and the computation
and removal of reachability sets of found dominions. Since we do both of these often, we assume them to
be elementary computations with computation time O(1) and show that the total run time remaining is

(p + k)O(
√
k). In bipartite instances we need O(n3) time to reduce the instance and to compute and remove

reachability sets. We will show that the run time on bipartite instances is kO(
√
k), when computation and

removal of reachability sets and the reductions are viewed as an elementary operation. Let T (k, p) denote the
time required by algorithm new-win on a game G = (V0 ⊎ V1, E, p) with |V1| = k and p = |{p(v) | v ∈ V }|,
when reduction of an instance and computation and removal of reachability sets of found dominions are
viewed as elementary computations and have run time O(1).

Lemma 16. The following recurrence relation holds:

(a) T (k, p) ≤ max{T (k − 1, p), T (k, p− 1) + T (k − ℓ, p)}+ domk,p(ℓ) + O(1) .

Proof. Algorithm new-win(G) tries to find dominions D with |D∩V1| ≤ ℓ = ⌊
√

2k⌋. By definition this takes
at most domk,p(ℓ) time on general instances. If a (non-empty) dominion is found, then the algorithm simply
proceeds on the remaining game, which has at most k − 1 odd nodes, and thus it solves this game in time
bounded by T (k − 1, p). Otherwise, a call to old-win(G) is made. This results in a call to new-win(G −
reachi(Vpmax

)). In this case the call takes at most T (k, p − 1) time because we removed all nodes with
the highest priority. If the set W ′

j returned by the call is empty, then we are done. Otherwise, W ′
j =

winj(G − reachi(Vpmax
)) and W ′

j ⊆ winj(G) by Lemma 4. Therefore, W ′
j is a j-dominion of G. We are in

the case that there is no dominion D with |D ∩ V1| ≤ ℓ in G. Thus, |W ′
j ∩ V1| > ℓ, and hence the second

recursive call new-win(G− reachj(W
′
j)) takes time at most T (k − ⌈ℓ⌉ , p). Consequently,

T (k, p) ≤ max{T (k − 1, p), T (k, p− 1) + T (k − ⌈ℓ⌉ , p)}+ domk,p(ℓ) + O(1).

Let T (k, even) and T (k, odd) denote the time required by algorithm new-win on a bipartite game G =
(V0 ⊎ V1, E, p) with |V1| = k when the largest priority is even respectively odd, when computation and
removal of reachability sets of found dominions and the reductions are viewed as elementary computations.
We denote by T (k) the time required by algorithm new-win on any bipartite game with |V1| = k; thus
T (k) ≤ max{T (k, even), T (k, odd)}.

Lemma 17. The following recurrence relations hold:

(b1) T (k, odd) ≤ T (k − 1) + T (k − ℓ) + domk(ℓ) + O(1),

(b2) T (k, even) ≤ max{T (k, odd), T (k − 1)}+ T (k − ℓ) + domk(ℓ) + O(1)

≤ T (k − 1) + 2T (k − ℓ) + 2domk(ℓ) + O(1),

(b3) T (k) ≤ T (k − 1) + 2T (k − ℓ) + 2domk(ℓ) + O(1) .

Proof. From the definition it follows directly that T (k) ≤ max{T (k, even), T (k, odd)}. Showing (b1) and (b2)
therefore yields (b3). Algorithm new-win(G) tries to find dominions D with |D ∩ V1| ≤ ℓ = ⌈

√
2k⌉. By

definition this takes at most domk(ℓ) time on bipartite instances. If a (non-empty) dominion is found, then
the algorithm simply proceeds on the remaining game, which has at most k−1 odd nodes, and the remaining
run time is therefore at most T (k − 1). Otherwise, a call to old-win(G) is made. This results in a call to
new-win(G− reachi(Vpmax

)). Here we have to distinguish whether the highest priority is odd or even.
If the highest priority is odd then, by Lemma 10, the set reach1(Vpmax

) ∩ V1 is non-empty and the call
takes at most T (k − 1) time.

In case the highest priority is even, we either have reach0(Vpmax
) ∩ V1 6= ∅ or reach0(Vpmax

) = Vpmax
in

which case Lemma 11 yields that in G − reachi(Vpmax
) the highest priority has to be odd. Therefore, this

call needs time at most max{T (k, odd), T (k − 1)}.
If the set W ′

j returned by the call is empty, then we are done. Otherwise, W ′
j = winj(G− reachi(Vpmax

))
and this is part of winj(G) by Lemma 4. Therefore, W ′

j is a j-dominion of G. We are in the case that there

16



is no dominion D with |D ∩ V1| at most ℓ in G, so we know that |W ′
j ∩ V1| > ℓ , and therefore the second

recursive call new-win(G− reachj(W
′
j)) takes at most T (k − ℓ) time. Thus, we obtain

T (k, odd) ≤ T (k − 1) + T (k − ℓ) + domk(ℓ)

and

T (k, even) ≤ max{T (k, odd), T (k − 1)}+ T (k − ℓ) + domk(ℓ)

≤ T (k − 1) + 2T (k − ℓ) + 2domk(ℓ),

which yields T (k) ≤ T (k − 1) + 2T (k − ℓ) + 2domk(ℓ).

For j ∈ N0, let T ′(sj , n− sj) denote the time required by algorithm new-win on a game G on n nodes
of which sj nodes have out-degree at most j.

Lemma 18. The following recurrence relation holds:

(c) T ′(sj , n− sj) ≤ max{T ′(sj − 1, n− sj), T
′(sj , n− sj − 1)}

+ max{T ′(sj − s, n− sj), T
′(sj , n− sj − ℓ)}+ domn,n−sj (ℓ, s) + O(1) .

Proof. Algorithm new-win(G, j) tries to find dominions D containing at most s nodes with out-degree at
most j and at most ℓ nodes with out-degree greater than j. By definition this takes at most domn,n−sj (ℓ, s)
time. If a (non-empty) dominion is found, then the algorithm simply proceeds on the remaining game, which
has at most n−1 nodes, and the remaining time is therefore at most max{T ′(sj−1, n−sj), T ′(sj , n−sj−1)}.
Otherwise, a call to old-win(G, j) is made. This results in a call to new-win(G− reachi(Vpmax

), j), this call
is to a game with fewer nodes and can be solved in time bounded by

max{T ′(sj − 1, n− sj), T
′(sj , n− sj − 1)} .

If the set W ′
k returned by the call is empty, then we are done. Otherwise, W ′

k = wink(G − reachi(Vpmax
)),

and W ′
k ⊆ wink(G) by Lemma 4. Therefore, W ′

k is a k-dominion of G. We are in the case that there is
no dominion D containing at most s nodes with out-degree at most j and at most ℓ nodes with out-degree
greater than j, so W ′

k either contains more than s nodes with out-degree at most j or more than ℓ nodes
with out-degree greater than j, and therefore the second recursive call new-win(G− reachk(W ′

k)) takes time
bounded by max{T ′(sj − s, n− sj), T

′(sj , n− sj − ℓ)}.
All other computations can be done in constant time. Thus, we obtain

T ′(sj , n− sj) ≤ max{T ′(sj − 1, n− sj), T
′(sj , n− sj − 1)}

+ max{T ′(sj − s, n− sj), T
′(sj , n− sj − ℓ)}+ domn,n−sj (ℓ, s) + O(1) .

We analyze recurrences (a) and (b) with ℓ = ⌊
√

2k⌋ in Theorem 5 in Sect. 11, which eventually shows that

T (k, p) ≤ (p+ k)O(
√
k) and T (k) ≤ kO(

√
k), and recurrence (c) with ℓ =

⌈

√

2(n− sj)
⌉

and s =

⌈

√

sj
logj sj

⌉

in

Theorem 22 in Sect. 11, which eventually shows that T ′(sj , n− sj) ≤ n
O

(√
n−sj+

√

sj

logj sj

)

. This completes
the analysis of the run time of new-win(G) and new-win(G, j), and it proves Theorem 1 and Theorem 3.

11 Recurrence Relation Computations

In this section we analyze the recurrence relations used to bound the run time of new-win.

Theorem 5. For k ∈ N and ℓ = ⌊
√

2k⌋, we obtain

T (k, p) = (p + k)O(
√
k),

T (k) = kO(
√
k).
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To prove Theorem 5, we first establish some lemmas.

Lemma 19. For k, p ∈ N and ℓ = ⌊
√

2k⌋, it holds

T (k, p) ≤ 2(k + p)⌊
√
2k⌋ · domk,p(

⌊√
2k
⌋

) and

T (k) ≤ 2(2k)
⌊√

2k
⌋

· domk(
⌈√

2k
⌉

) .

Proof. For every pair of integers k and p we construct binary trees Tk,p and Tk in the following way. The
root of Tk,p is labeled by k and k + p and the root of Tk is labeled by k. A node labeled by a number k > 4

has two children: in Tk,p a left child labeled by k and k + p− 1 and a right child labeled by k −
⌈√

2k
⌉

and

p+ k−
⌈√

2k
⌉

. In Tk a left child labeled by k′ and a right child labeled by k−
⌈√

2k
⌉

. A node labeled by k′

in Tk has two children: a left child labeled by k − 1 and a right child labeled by k −
⌈√

2k
⌉

. Nodes labeled

by a number k ≤ 4 are leaves. A node labeled by k and k+ p has a cost of domk,p(
⌊√

2k
⌋

) associated with it

and a node labeled by k or k′ has a cost of domk(
⌈√

2k
⌉

)) associated with it. It follows from Lemma 16 and

Lemma 17 that the sum of the costs of the nodes of Tk,p and Tk, is an upper bound on T (k, p) and T (k),
respectively. Clearly, the length of every path from the root to a leaf is at most p + k + 1 in Tk,p and 2k
in Tk. We say that such a path makes a right turn when it descends from a node to its right child. We next

claim that each such path makes at most
⌊√

2k
⌋

right turns. This follows immediately from the observation

that the function f(n) = n −
⌈√

2n
⌉

can be iterated on 2k at most
⌊√

2k
⌋

times before reaching the value

of 4 or less. This observation can be proved by induction, based on the fact that if 1
2 j

2 < n ≤ 1
2 (j + 1)2,

then n−
⌈√

2n
⌉

≤ 1
2j

2. (Initially we have j =
⌊√

2k
⌋

and finally, with 1 ≤ n ≤ 4, we have j ≥ 1.) As each

leaf of Tk,p and Tk is determined by the positions of the right turns on the path leading to it from the root,

we get that the number of leaves is at most
( k+p

⌊√2k⌋
)

in Tk,p and at most
(

2k
⌊√2k⌋

)

in Tk. The total number

of nodes is therefore at most at most 2
( k+p

⌊√2k⌋
)

≤ 2(k + p)
⌊√

2k
⌋

in Tk,p and at most 2
(

2k
⌊√2k⌋

)

≤ 2(2k)⌊
√
2k⌋

in Tk. As the cost of each node is at most domk,p(
⌊√

2k
⌋

) in Tk,p and at most domk(
⌈√

2k
⌉

) in Tk, we

immediately get

T (k, p) ≤ 2(k + p)⌊
√
2k⌋ · domk,p(

⌊√
2k
⌋

) and,

T (k) ≤ 2(2k)⌊
√
2k⌋ · domk(

⌈√
2k
⌉

) .

We obtain together with Lemma 14 that

T (k, p) ≤ 2(k + p)⌊
√
2k⌋ ·O

(

k⌊
√
2k⌋ · T (

⌊√
2k
⌋

, p)

)

,

as well as

T (k) ≤ 2(2k)

⌊√
2k

⌋

·O
(

k⌈
√
2k⌉T (

⌈√
2k
⌉

)
)

.

Lemma 20. Suppose that

T (k, p) ≤ 2(k + p)⌊
√
2k⌋ · O

(

k⌊
√
2k⌋ · T (

⌊√
2k
⌋

, p)
)
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and that T (ℓ, q) ≤ c′ · (q + ℓ)8⌊
√
2ℓ⌋ for some constant c′ ∈ R and for all pairs (ℓ, q) ∈ {1, . . . , 4} × N. Then

there exist constants c1 ≥ c′, c2 ≥ 8 such that for all k ∈ N,

T (k, p) ≤ c1 · (p + k)c2⌊
√
2k⌋ .

Proof. Since we have T (k, p) ≤ 2(k + p)⌊
√
2k⌋ · O

(

k⌊
√
2k⌋ · T (

⌊√
2k
⌋

, p)
)

, there exists a constant c′1 > 0

such that T (k, p) ≤ 2(k + p)⌊
√
2k⌋ · c′1k⌊

√
2k⌋ · T (

⌊√
2k
⌋

, p). Let αk =
⌊√2k⌋

⌊

√

2⌊√2k⌋
⌋ . Then for k ≥ 5, it holds

αk ≥ 1.5 > 1. Let c1 = max{c′1, c′}, and let c2 = 6 + 3 log (2c1). Suppose, for sake of contradiction, that the
statement of the lemma does not hold for this choice of (c1, c2). Then there exists a pair (k′, p′) ∈ N × N

for which T (k′, p′) > c1 · (p′ + k′)c2⌊
√
2k′⌋. Let k′ be the smallest integer for which such a pair exists, and

let p′ = p′(k′) be the smallest integer for which T (k′, p′) > c1 · (p′ +′ k)c2⌊
√
2k′⌋. Note that k′ ≥ 4 and

T (ℓ, q) ≤ c1 · q3 · (q + ℓ)c2
√
ℓ for all pairs (ℓ, q) with ℓ ≤ k′, q ≤ p′ and ℓ + q < k′ + p′. Further, it holds

c2 ≥ c2
αk

+ 2 + log (2c′1) for all k ≥ 4. For k ≥ 4 we also have
⌊√

2k
⌋

< k. This implies that

T (k′, p′) ≤ 2(k′ + p′)⌊
√
2k′⌋ · c′1 · k′⌊

√
2k′⌋ · T (

⌊√
2k′
⌋

, p′))

≤ 2(k′ + p′)⌊
√
2k′⌋ · c′1 · k′⌊

√
2k′⌋ · c1 · (p′ +

⌊√
2k′
⌋

)
c2

⌊

√

2⌊√2k′⌋
⌋

≤ 2(k′ + p′)⌊
√
2k′⌋ · c′1 · k′⌊

√
2k′⌋ · c1 · (p′ +

⌊√
2k′
⌋

)
c2

⌊

√

2⌊√2k′⌋
⌋

≤ (2c′1c1)(k′ + p′)
2⌊√2k′⌋+c2

⌊

√

2⌊√2k′⌋
⌋

≤ c1(k′ + p′)
2⌊√2k′⌋+ c2

a
k′
⌊√2k′⌋+log (2c′1)

≤ c1(k′ + p′)
(2+

c2
a
k′

+log (2c′1))⌊
√
2k′⌋

≤ c1(k′ + p′)c2⌊
√
2k′⌋

This contradicts the existence of k′, and therefore concludes the proof.

Lemma 21. Suppose that

T (k) ≤ 2(2k)⌊
√
2k⌋ · O

(

k⌊
√
2k⌋T (

⌊√
2k
⌋

)
)

and that T (ℓ) ≤ c′ℓ⌊
√
2ℓ⌋ for some constant c′ ∈ R and for all ℓ ≤ 4. Then there exist constants c1 ≥ c′, c2 ≥ 1

such that for all k ∈ N,

T (k) ≤ c1k
c2⌊√2k⌋ .

Proof. Since T (k) ≤ 2(2k)⌊
√
2k⌋ · O

(

k⌊
√
2k⌋T (

⌊√
2k
⌋

)
)

, there exists a constant c′1 > 0 such that T (k) ≤

2(2k)⌊
√
2k⌋ · c′1

(

k⌊
√
2k⌋T (

⌊√
2k
⌋

)
)

. Let αk =
⌊√2k⌋

⌊

√

2⌊√2k⌋
⌋ . Then for k ≥ 5 it holds that αk ≥ 1.5 > 1. Let

c1 = max{c′1, c′} and let c2 = 12 + 3 log c1. Suppose, for sake of contradiction, that the statement of the

lemma does not holds for this choice of (c1, c2). Then exists a k′ ∈ N such that T (k′) > c1k
′c2⌊√2k′⌋. Let k′

be the smallest such integer. Note that we must have k′ ≥ 4 and T (ℓ) ≤ c1ℓ
c2⌊√2ℓ⌋ for all ℓ < k′. Further,
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it holds that c2 ≥ c2
α′

k

+ 4 + log c1 for all k ≥ 5. For k ≥ 4 we also have
⌊√

2k
⌋

< k. This implies that

T (k′) ≤ 2(2k′)⌊
√
2k′⌋ · c′1

(

k′⌊
√
2k′⌋T (

⌊√
2k′
⌋

)
)

≤ 2(2k′)⌊
√
2k′⌋ · c1

(

2c1k
′⌊√2k′⌋k′c2

⌊

√

2⌊√2k′⌋
⌋
)

≤ 2c1(2k
′)⌊

√
2k′⌋k′(

c2
α′
k

+1)⌊√2k′⌋+log c1

≤ 2c1k
′2⌊√2k′⌋k′(

c2

α′
k

+1)⌊√2k′⌋+log c1

≤ c1k
′⌊√2k′⌋( c2

α′
k

+3)+log c1+log 2

≤ c1k
′⌊√2k′⌋( c2

α′
k

+4+log c1)

≤ c1k
′c2⌊√2k′⌋ .

This contradicts the existence of k′, and therefore concludes the proof.

Since T (k, p) ∈ O(p(k
2)), it holds that O(p8⌊

√
2k⌋). Moreover, as T (k) = O(1) for k ≤ 4, we conclude

that T (k, p) = (p + k)O(
√
k) and T (k) = kO(

√
k). This completes the proof of Theorem 5.

Next, we will prove the following.

Lemma 22. For sj , j, n ∈ N, s =

⌈

√

sj
logj sj

⌉

and ℓ =
⌈

√

2(n− sj)
⌉

we obtain

T (sj, n− sj) = n
O

(√
n−sj+

√

sj

logj sj

)

.

To prove Lemma 22, we first establish another lemma.

Lemma 23. For sj , j, n ∈ N, s =

⌈

√

sj
logj sj

⌉

and ℓ =
⌈

√

2(n− sj)
⌉

, it holds

T (sj, n− sj) ≤ n
O

(√
n−sj+

√

sj

logj sj

)

·
(

domn,n−sj (ℓ, s) + O(1)
)

.

Proof. For each parity game G on n nodes and sj = sj(G) we construct a binary tree TG in the following
way. The root of TG is labeled by (sj , n− sj). A node labeled by (a, b) with a > 3 and b > 3 has up to two
children: a left child labeled by (a−1, b) or (a, b−1), and possibly a right child labeled by (a−√a · logj a, b)

or (a, b−
√
b). Each child of a node corresponds to one of the recursive calls. The choice on how we label the

children depends on the behavior of the algorithm. We label the children of a node by (a′, b′) and (a′′, b′′)
such that the recursive calls of the algorithm are to games containing at most a′, respectively a′′ nodes of out-
degree at most j and at most b′, respectively b′′, nodes of out-degree greater than j. Nodes labeled by (a, b)

with a, b ∈ {0, 1, 2, 3} are leaves. A node labeled by (a, b) has a cost of
(

doma+b,b(
√
b,
√

a · logj a) + O(1)
)

associated with it.
It follows from Lemma 18 that the sum of the costs of the nodes of TG is an upper bound on the run time

of new-win(G, j). The worst possible sum of the costs of the nodes of TG we can obtain for some instance G
with sj = sj(G) and n = |V | therefore is an upper bound of T (sj, n− sj). Clearly, the length of every path
in TG from the root to a leaf is at most n. We say that such a path makes a right turn when it descends from

a node to its right child. We next claim that each such path makes at most O(
√
n− sj +

√

sj
logj sj

) right turns.

This follows immediately from the observation that the function f(x) = x−
⌈√

2x
⌉

can be iterated on n− sj
at most O(

√
n− sj) times before reaching the value of 3 or less and the function g(x) = x −

⌈
√

x · logj x
⌉
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can be iterated on sj at most O(
√

sj
logj sj

) times before reaching the value of 3 or less. As each leaf of TG

is determined by the positions of the right turns on the path leading to it from the root, we get that the

number of leaves in TG is at most n
O

(√
n−sj+

√

sj

logj sj

)

. The total number of nodes in TG is therefore at

most n
O

(√
n−sj+

√

sj

logj sj

)

. As the cost of each node is at most
(

domn,n−sj (ℓ, s)
)

+ O(1), we immediately
have that

T (sj , n− sj) ≤ n
O

(√
n−sj+

√

sj

logj sj

)

·
(

domn,n−sj (ℓ, s) + O(1)
)

.

Together with Lemma 15, we obtain

T (sj, n− sj) = n
O

(√
n−sj+

√

sj

logj sj

)

.

This completes the proof of Lemma 22.
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