Skip to main content

Chasing Convex Bodies and Functions

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

We consider three related online problems: Online Convex Optimization, Convex Body Chasing, and Lazy Convex Body Chasing. In Online Convex Optimization the input is an online sequence of convex functions over some Euclidean space. In response to a function, the online algorithm can move to any destination point in the Euclidean space. The cost is the total distance moved plus the sum of the function costs at the destination points. Lazy Convex Body Chasing is a special case of Online Convex Optimization where the function is zero in some convex region, and grows linearly with the distance from this region. And Convex Body Chasing is a special case of Lazy Convex Body Chasing where the destination point has to be in the convex region. We show that these problems are equivalent in the sense that if any of these problems have an O(1)-competitive algorithm then all of the problems have an O(1)-competitive algorithm. By leveraging these results we then obtain the first O(1)-competitive algorithm for Online Convex Optimization in two dimensions, and give the first O(1)-competitive algorithm for chasing linear subspaces. We also give a simple algorithm and O(1)-competitiveness analysis for chasing lines.

K. Pruhs—Supported, in part, by NSF grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty Award.

K. Schewior—Supported by the DFG within the research training group ‘Methods for Discrete Structures’ (GRK 1408).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. In: Conference on Learning Theory, pp. 741–763 (2013)

    Google Scholar 

  2. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. CoRR, abs/1508.03769 (2015)

    Google Scholar 

  3. Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture: a primal-dual approach. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 40–55 (2010)

    Google Scholar 

  4. Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 96–109 (2015)

    Google Scholar 

  5. Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)

    Google Scholar 

  7. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coté, A., Meyerson, A., Poplawski, L.: Randomized \(k\)-server on hierarchical binary trees. In: ACM Symposium on Theory of Computing, pp. 227–234 (2008)

    Google Scholar 

  9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman, J., Linial, N.: On convex body chasing. Discrete Comput. Geom. 9, 293–321 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular polygons. Inf. Process. Lett. 108(3), 155–159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koutsoupias, E., Taylor, D.S.: The CNN problem and other \(k\)-server variants. Theor. Comput. Sci. 324(2–3), 347–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical load balancing. In: International Green Computing Conference, pp. 1–10 (2012)

    Google Scholar 

  15. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity provisioning in data centers. In: Allerton Conference on Communication, Control, and Computing, pp. 1159–1163 (2011)

    Google Scholar 

  16. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)

    Article  Google Scholar 

  17. Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online optimization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100 (2012)

    Article  Google Scholar 

  18. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical load balancing. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 233–244 (2011)

    Google Scholar 

  19. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Application. Academic Press, Cambridge (1979)

    MATH  Google Scholar 

  20. Sitters, R.: The generalized work function algorithm is competitive for the generalized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM, pp. 515–519 (2013)

    Google Scholar 

  22. Wierman, A.: Personal Communication (2015)

    Google Scholar 

Download references

Acknowledgement

We thank Nikhil Bansal, Anupam Gupta, Cliff Stein, Ravishankar Krishnaswamy, and Adam Wierman for helpful discussions. We also thank an anonymous reviewer for pointing out an important subtlety in one of our proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Schewior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato, M. (2016). Chasing Convex Bodies and Functions. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics