Abstract
We consider three related online problems: Online Convex Optimization, Convex Body Chasing, and Lazy Convex Body Chasing. In Online Convex Optimization the input is an online sequence of convex functions over some Euclidean space. In response to a function, the online algorithm can move to any destination point in the Euclidean space. The cost is the total distance moved plus the sum of the function costs at the destination points. Lazy Convex Body Chasing is a special case of Online Convex Optimization where the function is zero in some convex region, and grows linearly with the distance from this region. And Convex Body Chasing is a special case of Lazy Convex Body Chasing where the destination point has to be in the convex region. We show that these problems are equivalent in the sense that if any of these problems have an O(1)-competitive algorithm then all of the problems have an O(1)-competitive algorithm. By leveraging these results we then obtain the first O(1)-competitive algorithm for Online Convex Optimization in two dimensions, and give the first O(1)-competitive algorithm for chasing linear subspaces. We also give a simple algorithm and O(1)-competitiveness analysis for chasing lines.
K. Pruhs—Supported, in part, by NSF grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty Award.
K. Schewior—Supported by the DFG within the research training group ‘Methods for Discrete Structures’ (GRK 1408).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. In: Conference on Learning Theory, pp. 741–763 (2013)
Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. CoRR, abs/1508.03769 (2015)
Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture: a primal-dual approach. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 40–55 (2010)
Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 96–109 (2015)
Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)
Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)
Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)
Coté, A., Meyerson, A., Poplawski, L.: Randomized \(k\)-server on hierarchical binary trees. In: ACM Symposium on Theory of Computing, pp. 227–234 (2008)
Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)
Friedman, J., Linial, N.: On convex body chasing. Discrete Comput. Geom. 9, 293–321 (1993)
Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular polygons. Inf. Process. Lett. 108(3), 155–159 (2008)
Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)
Koutsoupias, E., Taylor, D.S.: The CNN problem and other \(k\)-server variants. Theor. Comput. Sci. 324(2–3), 347–359 (2004)
Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical load balancing. In: International Green Computing Conference, pp. 1–10 (2012)
Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity provisioning in data centers. In: Allerton Conference on Communication, Control, and Computing, pp. 1159–1163 (2011)
Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)
Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online optimization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100 (2012)
Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical load balancing. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 233–244 (2011)
Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Application. Academic Press, Cambridge (1979)
Sitters, R.: The generalized work function algorithm is competitive for the generalized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)
Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM, pp. 515–519 (2013)
Wierman, A.: Personal Communication (2015)
Acknowledgement
We thank Nikhil Bansal, Anupam Gupta, Cliff Stein, Ravishankar Krishnaswamy, and Adam Wierman for helpful discussions. We also thank an anonymous reviewer for pointing out an important subtlety in one of our proofs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato, M. (2016). Chasing Convex Bodies and Functions. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-49529-2_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49528-5
Online ISBN: 978-3-662-49529-2
eBook Packages: Computer ScienceComputer Science (R0)